Digging into user control: perceptions of adherence and instability in transparent models

We explore predictability and control in interactive systems where controls are easy to validate. Human-in-the-loop techniques allow users to guide unsupervised algorithms by exposing and supporting interaction with underlying model representations, increasing transparency and promising fine-grained control. However, these models must balance user input and the underlying data, meaning they sometimes update slowly, poorly, or unpredictably---either by not incorporating user input as expected (adherence) or by making other unexpected changes (instability). While prior work exposes model internals and supports user feedback, less attention has been paid to users' reactions when transparent models limit control. Focusing on interactive topic models, we explore user perceptions of control using a study where 100 participants organize documents with one of three distinct topic modeling approaches. These approaches incorporate input differently, resulting in varied adherence, stability, update speeds, and model quality. Participants disliked slow updates most, followed by lack of adherence. Instability was polarizing: some participants liked it when it surfaced interesting information, while others did not. Across modeling approaches, participants differed only in whether they noticed adherence.

[1]  Jordan L. Boyd-Graber,et al.  Why Didn’t You Listen to Me? Comparing User Control of Human-in-the-Loop Topic Models , 2019, ACL.

[2]  Stephanie Rosenthal,et al.  Towards maximizing the accuracy of human-labeled sensor data , 2010, IUI '10.

[3]  Tom Wilson Review of : Hoekman, R. Designing the obvious: a common sense approach to Web application design. Berkeley, CA: New Riders, 2006 , 2007 .

[4]  Michael Gleicher,et al.  Assessing Topic Representations for Gist-Forming , 2016, AVI.

[5]  Anind K. Dey,et al.  Why and why not explanations improve the intelligibility of context-aware intelligent systems , 2009, CHI.

[6]  Jr. Robert Hoekman Designing the Obvious: A Common Sense Approach to Web Application Design , 2002 .

[7]  David M. Blei,et al.  Visualizing Topic Models , 2012, ICWSM.

[8]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[9]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[10]  Ben Shneiderman,et al.  Designing the User Interface: Strategies for Effective Human-Computer Interaction , 1998 .

[11]  Kristina Höök,et al.  Steps to take before intelligent user interfaces become real , 2000, Interact. Comput..

[12]  Kathleen McKeown,et al.  Human-Centric Justification of Machine Learning Predictions , 2017, IJCAI.

[13]  Andrew McCallum,et al.  Semi-Supervised Clustering with User Feedback , 2003 .

[14]  Xiaojin Zhu,et al.  Incorporating domain knowledge into topic modeling via Dirichlet Forest priors , 2009, ICML '09.

[15]  David M. Mimno,et al.  Applications of Topic Models , 2017, Found. Trends Inf. Retr..

[16]  Weng-Keen Wong,et al.  Explanatory Debugging: Supporting End-User Debugging of Machine-Learned Programs , 2010, VL/HCC.

[17]  Quentin Pleple,et al.  Interactive Topic Modeling , 2013 .

[18]  Hugo Larochelle,et al.  A Neural Autoregressive Topic Model , 2012, NIPS.

[19]  Yee Whye Teh,et al.  On Smoothing and Inference for Topic Models , 2009, UAI.

[20]  Daniel Vogel,et al.  Automation Accuracy Is Good, but High Controllability May Be Better , 2019, CHI.

[21]  Weng-Keen Wong,et al.  Too much, too little, or just right? Ways explanations impact end users' mental models , 2013, 2013 IEEE Symposium on Visual Languages and Human Centric Computing.

[22]  Jun Wang,et al.  Interactive Topic Model with Enhanced Interpretability , 2019, IUI Workshops.

[23]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[24]  Vijaymeena M.K,et al.  A Survey on Similarity Measures in Text Mining , 2016 .

[25]  Yi Yang,et al.  User-directed Non-Disruptive Topic Model Update for Effective Exploration of Dynamic Content , 2015, IUI.

[26]  Niklas Elmqvist,et al.  Evaluating Visual Representations for Topic Understanding and Their Effects on Manually Generated Topic Labels , 2017, TACL.

[27]  Raymond J. Mooney,et al.  Explaining Recommendations: Satisfaction vs. Promotion , 2005 .

[28]  Alexander J. Smola,et al.  Word Features for Latent Dirichlet Allocation , 2010, NIPS.

[29]  Jordan L. Boyd-Graber,et al.  Closing the Loop: User-Centered Design and Evaluation of a Human-in-the-Loop Topic Modeling System , 2018, IUI.

[30]  V. Braun,et al.  Using thematic analysis in psychology , 2006 .

[31]  Desney S. Tan,et al.  Examining multiple potential models in end-user interactive concept learning , 2010, CHI.

[32]  Doug Downey,et al.  Efficient Methods for Incorporating Knowledge into Topic Models , 2015, EMNLP.

[33]  Vladimir Eidelman,et al.  Polylingual Tree-Based Topic Models for Translation Domain Adaptation , 2014, ACL.

[34]  Paul N. Bennett,et al.  Guidelines for Human-AI Interaction , 2019, CHI.

[35]  Giuseppe Carenini,et al.  ConVisIT: Interactive Topic Modeling for Exploring Asynchronous Online Conversations , 2015, IUI.

[36]  Chong Wang,et al.  Reading Tea Leaves: How Humans Interpret Topic Models , 2009, NIPS.

[37]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[38]  Paul N. Bennett,et al.  Will You Accept an Imperfect AI?: Exploring Designs for Adjusting End-user Expectations of AI Systems , 2019, CHI.

[39]  Timothy Baldwin,et al.  Machine Reading Tea Leaves: Automatically Evaluating Topic Coherence and Topic Model Quality , 2014, EACL.

[40]  John Schulman,et al.  Concrete Problems in AI Safety , 2016, ArXiv.

[41]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Abdullah Gani,et al.  A survey on indexing techniques for big data: taxonomy and performance evaluation , 2016, Knowledge and Information Systems.

[43]  Diyi Yang,et al.  Incorporating Word Correlation Knowledge into Topic Modeling , 2015, NAACL.

[44]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[45]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[46]  Karrie Karahalios,et al.  The Illusion of Control: Placebo Effects of Control Settings , 2018, CHI.

[47]  David M. Mimno,et al.  Care and Feeding of Topic Models , 2014, Handbook of Mixed Membership Models and Their Applications.

[48]  Taghi M. Khoshgoftaar,et al.  A survey of open source tools for machine learning with big data in the Hadoop ecosystem , 2015, Journal of Big Data.

[49]  D. Mimno,et al.  Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements , 2014 .

[50]  Derek Greene,et al.  Stability of topic modeling via matrix factorization , 2017, Expert Syst. Appl..

[51]  Niklas Elmqvist,et al.  The human touch: How non-expert users perceive, interpret, and fix topic models , 2017, Int. J. Hum. Comput. Stud..

[52]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[53]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[54]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[55]  Jordan L. Boyd-Graber,et al.  Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling , 2017, ACL.

[56]  Li Chen,et al.  Trust building with explanation interfaces , 2006, IUI '06.

[57]  Derek Greene,et al.  How Many Topics? Stability Analysis for Topic Models , 2014, ECML/PKDD.

[58]  Jordan L. Boyd-Graber,et al.  Mr. LDA: a flexible large scale topic modeling package using variational inference in MapReduce , 2012, WWW.

[59]  Anind K. Dey,et al.  Assessing demand for intelligibility in context-aware applications , 2009, UbiComp.

[60]  Ben Shneiderman,et al.  Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition , 2016 .

[61]  Dat Quoc Nguyen,et al.  Improving Topic Coherence with Latent Feature Word Representations in MAP Estimation for Topic Modeling , 2015, ALTA.