Structure, composition, and location of organic matter in the enstatite chondrite Sahara 97096 (EH3)

Abstract– The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine‐grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar δ15N and δ13C; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium‐heterogeneity and having mean H‐ and N‐isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer‐sized areas highly enriched in 15N (δ15N up to 1600‰). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.

[1]  J. Rouzaud,et al.  High resolution TEM of chondritic carbonaceous matter: Metamorphic evolution and heterogeneity , 2012 .

[2]  Jean-Noël Rouzaud,et al.  How to obtain reliable structural characterization of polished graphitized carbons by Raman microspectrometry , 2012 .

[3]  P. Beck,et al.  A reappraisal of the metamorphic history of EH3 and EL3 enstatite chondrites , 2011 .

[4]  S. Derenne,et al.  Model of molecular structure of the insoluble organic matter isolated from Murchison meteorite , 2010 .

[5]  J. Rouzaud,et al.  Determination of Carbon Origin in Acapulco and Lodran by HRTEM and C, N Isotopes , 2010 .

[6]  G. Tzvetkov,et al.  XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis , 2010 .

[7]  G. Cody,et al.  Deuterium enrichments in chondritic macromolecular material—Implications for the origin and evolution of organics, water and asteroids , 2010 .

[8]  L. Nittler,et al.  Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation , 2010 .

[9]  H. Leroux,et al.  Extreme Deuterium Excesses in Ultracarbonaceous Micrometeorites from Central Antarctic Snow , 2010, Science.

[10]  John M. Eiler,et al.  ACCRETION AND PRESERVATION OF D-RICH ORGANIC PARTICLES IN CARBONACEOUS CHONDRITES: EVIDENCE FOR IMPORTANT TRANSPORT IN THE EARLY SOLAR SYSTEM NEBULA , 2010 .

[11]  L. Bonal,et al.  Chondritic lithic clasts in the CB/CH-like meteorite Isheyevo: Fragments of previously unsampled parent bodies , 2010 .

[12]  A. Brearley,et al.  Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177 , 2010 .

[13]  G. Varela-Castro,et al.  Looking at Graphite Spheroids , 2009 .

[14]  J. Rouzaud,et al.  Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals , 2009 .

[15]  S. Derenne,et al.  Molecular and Isotopic Study of the Insoluble Organic Matter Isolated from a Primitive Enstatite Chondrite , 2009 .

[16]  J. Rouzaud,et al.  Combined microraman and C-, N-isotopic study of disordered carbons in acapulcoites-lodranites , 2009 .

[17]  H. Leroux,et al.  Pristine extraterrestrial material with unprecedented nitrogen isotopic variation , 2009, Proceedings of the National Academy of Sciences.

[18]  S. Derenne,et al.  PROTO-PLANETARY DISK CHEMISTRY RECORDED BY D-RICH ORGANIC RADICALS IN CARBONACEOUS CHONDRITES , 2009 .

[19]  C. Floss,et al.  HIGH ABUNDANCES OF CIRCUMSTELLAR AND INTERSTELLAR C-ANOMALOUS PHASES IN THE PRIMITIVE CR3 CHONDRITES QUE 99177 AND MET 00426 , 2009 .

[20]  A. Rubin,et al.  Clastic matrix in EH3 chondrites , 2009 .

[21]  I. Fletcher,et al.  NanoSIMS μm-scale in situ measurement of 13C/12C in early Precambrian organic matter, with permil precision , 2008 .

[22]  K. Benzerara,et al.  Raman Mapping Using Advanced Line-Scanning Systems: Geological Applications , 2008, Applied spectroscopy.

[23]  G. Cody,et al.  Organic thermometry for chondritic parent bodies , 2008 .

[24]  S. Derenne,et al.  Extreme deuterium enrichment of organic radicals in the Orgueil meteorite: Revisiting the interstellar interpretation? , 2008 .

[25]  J. Rouzaud,et al.  Molecular study of insoluble organic matter in Kainsaz CO3 carbonaceous chondrite: Comparison with CI and CM IOM , 2008 .

[26]  S. Derenne,et al.  The insoluble organic matter in carbonaceous chondrites: Chemical structure, isotopic composition and origin , 2007 .

[27]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[28]  Larry R. Nittler,et al.  Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy , 2007 .

[29]  L. Bonal,et al.  Organic matter and metamorphic history of CO chondrites , 2007 .

[30]  G. Cody,et al.  The insoluble carbonaceous material of CM chondrites: A possible source of discrete organic compounds under hydrothermal conditions , 2007 .

[31]  Michael E. Zolensky,et al.  Organic Globules in the Tagish Lake Meteorite: Remnants of the Protosolar Disk , 2006, Science.

[32]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[33]  G. J. Taylor Interstellar Organic Matter in Meteorites , 2006 .

[34]  A. Schimmelmann,et al.  Hydrogen Isotopic (D/H) Composition of Organic Matter During Diagenesis and Thermal Maturation , 2006 .

[35]  L. Bonal,et al.  Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter , 2006 .

[36]  François Robert,et al.  Enrichment of deuterium in insoluble organic matter from primitive meteorites: A solar system origin? , 2006 .

[37]  S. Derenne,et al.  New pyrolytic and spectroscopic data on Orgueil and Murchison insoluble organic matter: A different origin than soluble? , 2005 .

[38]  J. Rouzaud,et al.  Size discontinuity between interstellar and chondritic aromatic structures: A high-resolution transmission electron microscopy study , 2005 .

[39]  P. Hoppe,et al.  In situ survey of graphite in unequilibrated chondrites: Morphologies, C, N, O, and H isotopic ratios , 2005 .

[40]  S. Pizzarello,et al.  Diradicaloids in the insoluble organic matter from the Tagish Lake meteorite: Comparison with the Orgueil and Murchison meteorites , 2004 .

[41]  P. Buseck,et al.  Nanosized carbon-rich grains in carbonaceous chondrite meteorites , 2004 .

[42]  B. Jolliff,et al.  Mineralogy of a Martian meteorite as determined by Raman spectroscopy , 2004 .

[43]  P. Hoppe,et al.  A NanoSIMS Study of Iron-Isotopic Compositions in Presolar Silicon Carbide Grains , 2004 .

[44]  I. Ciofini,et al.  Occurence of abundant diradicaloid moieties in the insoluble organic matter from the Orgueil and Murchison meteorites : a fingerprint of its extraterrestrial origin ? , 2004 .

[45]  J. Rouzaud,et al.  Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature , 2003 .

[46]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[47]  L. Nittler Presolar stardust in meteorites : recent advances and scientific frontiers , 2003 .

[48]  J. Geiss,et al.  Isotopic Composition of H, HE and NE in the Protosolar Cloud , 2003 .

[49]  S. Derenne,et al.  Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites , 2002 .

[50]  J. Rouzaud,et al.  Raman spectra of carbonaceous material in metasediments: a new geothermometer , 2002 .

[51]  F. Robert Water and organic matter D/H ratios in the solar system: a record of an early irradiation of the nebula? , 2002 .

[52]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[53]  S. Mostefaoui,et al.  Metal-associated carbon in primitive chondrites: structure, isotopic composition, and origin , 2000 .

[54]  C. Pillinger,et al.  The origin of chondritic macromolecular organic matter: A carbon and nitrogen isotope study , 1998, Meteoritics & planetary science.

[55]  Hoppe,et al.  In situ discovery of graphite with interstellar isotopic signatures in a chondrule-free clast in an L3 chondrite , 1998, Science.

[56]  M. Prinz,et al.  Sahara 97096: A Highly Primitive EH3 Chondrite with Layered Sulfide-metal-rich Chondrules , 1998 .

[57]  F. Robert,et al.  High Carbon Concentrations in Meteoritic Chondrules: A Record of Metal-Silicate Differentiation , 1998 .

[58]  C. Pillinger,et al.  The isotopic composition and origins of silicon nitride from ordinary and enstatite chondrites , 1995 .

[59]  D. Sears,et al.  The classification and complex thermal history of the enstatite chondrites , 1995 .

[60]  E. Zinner,et al.  Survival of isotopically heterogeneous graphite in a differentiated meteorite , 1995, Nature.

[61]  E. Pernicka,et al.  Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites , 1988 .

[62]  J. Rouzaud,et al.  Graphitization of Korean anthracites as studied by transmission electron microscopy and X-ray diffraction , 1987 .

[63]  R Shipp,et al.  Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite. , 1987, Geochimica et cosmochimica acta.

[64]  C. Pillinger,et al.  Compositional differences in enstatite chondrites based on carbon and nitrogen stable isotope measurements , 1986 .

[65]  Jean-Noël Rouzaud,et al.  Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy , 1985 .

[66]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[67]  K. Keil Mineralogical and chemical relationships among enstatite chondrites , 1968 .

[68]  A. E. Goresy Mineralbestand und Strukturen der Graphit- und Sulfideinschlüsse in Eisenmeteoriten , 1965 .

[69]  S. Bernard,et al.  REDISTRIBUTION AND EVOLUTION OF ORGANICS DURING AQUEOUS ALTERATION : NANOSIMS-SXTM-TEM ANALYSES OF FIB SECTIONS FROM RENAZZO , MURCHISON AND , 2011 .

[70]  F. Robert,et al.  Chemical and Nitrogen isotopic composition of the hotspots in Orgueil insoluble organic matter , 2010 .

[71]  S. Derenne,et al.  The organic matter in the less metamorphosed enstatite chondrite Sahara 97096: Isotopic composition and spatial distribution , 2010 .

[72]  C. Floss,et al.  In Situ Observation of C and N Anomalous Organic Grains in the Matrix of MET 00426 (CR3.0) , 2010 .

[73]  F. Robert,et al.  SPATIAL RELATIONS BETWEEN D/H AND N ISOTOPIC ANOMALIES IN ORGUEIL AND MURCHISON INSOLUBLE ORGANIC MATTER: A NANOSIMS STUDY , 2009 .

[74]  R. Wiens,et al.  Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the nascent solar system , 2009 .

[75]  A. Rubin,et al.  Abee and related EH chondrite impact-melt breccias , 1997 .

[76]  C. Pillinger,et al.  Carbon, nitrogen and hydrogen in Saharan chondrites: The importance of weathering , 1995 .

[77]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[78]  C. Alexander,et al.  Occurrence and implications of silicon nitride in enstatite chondrites , 1994 .

[79]  T. Owen Deuterium in the solar system , 1992 .

[80]  P. Deines,et al.  The stable carbon isotopes in enstatite chondrites and Cumberland Falls , 1985 .

[81]  K. Keil,et al.  Mineralogy and petrology of the Abee enstatite chondrite breccia and its dark inclusions , 1983 .

[82]  F. Robert,et al.  The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites☆ , 1982 .

[83]  A. Ōya,et al.  Catalytic graphitization of carbons by various metals , 1979 .

[84]  R. Brett Cohenite: its occurrence and a proposed origin , 1967 .