Statistical Parameter Identification of Analog Integrated Circuit Reverse Models

We solve the manufacturing problem of identifying the model statistical parameters ensuring a satisfactory quality of analog circuits produced in a photolithographic process. We formalize it in a statistical framework as the problem of inverting the mapping from the population of the circuit production variables to the performances' population. Both variables and performances are random. From a sample of the joint population we want to identify the statistical features of the former producing a performance distribution that satisfies the design constraints with a good preassigned probability. The key idea of the solution method we propose consists of describing the above mapping in terms of a mixture of granular functions, where each is responsible for a fuzzy set within the input-output space, hence for a cluster therein. The way of synthesizing the whole space as a mixture of these clusters is learnt directly from the examples. As a result we have an analytical form both of the mapping approximating complex Spice models in terms of polynomials in the production variables, and of the distribution law of the induced performances that allows a relatively quick and easy management of the production variables' statistical parameters as a function of the probability with which we plan to satisfy the design constraint. We apply the method to case studies and real production data where our method outperforms current methods' running times and accuracies.

[1]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[2]  Hamid-Reza Bahrami,et al.  Accurate and efficient modeling of SOI MOSFET with technology independent neural networks , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  Georges G. E. Gielen,et al.  Analysis of simulation-driven numerical performance modeling techniques for application to analog circuit optimization , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[4]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[5]  Włodzisław Duch,et al.  Multilayer Perceptron Trained with Numerical Gradient , 2003 .

[6]  Georges G. E. Gielen,et al.  Simulation-based generation of posynomial performance models for the sizing of analog integrated circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[8]  James D. Meindl,et al.  Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration , 2002, IEEE J. Solid State Circuits.

[9]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[10]  J. Leader Numerical Analysis and Scientific Computation , 2022 .

[11]  M. A. Styblinski,et al.  Parameter extraction for statistical IC modeling based on recursive inverse approximation , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[13]  Stephen J. Wright,et al.  Springer Series in Operations Research , 1999 .

[14]  B Apolloni,et al.  Appreciation of medical treatments through confidence intervals. , 2007, Current pharmaceutical design.

[15]  Hitoshi Iba,et al.  Overfitting avoidance in genetic programming of polynomials , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  Michiel Steyaert,et al.  Variation-Aware Analog Structural Synthesis: A Computational Intelligence Approach , 2009 .

[17]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[18]  Michiel Steyaert,et al.  A layout-aware synthesis methodology for RF circuits , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[19]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[20]  Marc Rocchi,et al.  Realistic statistical worst-case simulations of VLSI circuits , 1991 .

[21]  Georges Gielen,et al.  Generalized Simulation-Based Posynomial Model Generation for Analog Integrated Circuits , 2004 .

[22]  Witold Pedrycz,et al.  Interpolating support information granules , 2006, Neurocomputing.

[23]  Muni S. Srivastava,et al.  Regression Analysis: Theory, Methods, and Applications , 1991 .

[24]  V. Barnett The Ordering of Multivariate Data , 1976 .

[25]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[26]  Wlodzislaw Duch,et al.  Variable step search algorithm for feedforward networks , 2008, Neurocomputing.

[27]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[28]  Georges G. E. Gielen,et al.  Double-Strength CAFFEINE: Fast Template-Free Symbolic Modeling of Analog Circuits via Implicit Canonical Form Functions and Explicit Introns , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[29]  Peter Y. K. Cheung,et al.  Statistical and behavioural modelling of analogue integrated circuits , 1993 .

[30]  J. E. Purviance,et al.  A linear statistical FET model using principal component analysis , 1989 .

[31]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[32]  Kevin S. Eshbaugh,et al.  Generation of correlated parameters for statistical circuit simulation , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[33]  D. Schreurs,et al.  Extraction of small signal equivalent circuit model parameters for statistical modeling of HBT using artificial neural , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.

[34]  Donald E. Brown,et al.  Induction and polynomial networks , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[35]  Kenneth S. Kundert,et al.  The designer's guide to SPICE and Spectre , 1995 .

[36]  Jürgen Koehl,et al.  DATE 2006 Special Session: DFM/DFY Design for Manufacturability and Yield - influence of process variations in digital, analog and mixed-signal circuit design , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[37]  Martin Fodslette Meiller A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1993 .

[38]  Witold Pedrycz,et al.  The Puzzle of Granular Computing , 2008, Studies in Computational Intelligence.

[39]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[40]  E. Nowak,et al.  High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res And Dev , 2006 .

[41]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[42]  Trent McConaghy,et al.  CAFFEINE: template-free symbolic model generation of analog circuits via canonical form functions and genetic programming , 2005 .

[43]  Stavros J. Perantonis,et al.  Two highly efficient second-order algorithms for training feedforward networks , 2002, IEEE Trans. Neural Networks.

[44]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[45]  Sani R. Nassif,et al.  Models of process variations in device and interconnect , 2000 .

[46]  William J. Byrne,et al.  Convergence Theorems for Generalized Alternating Minimization Procedures , 2005, J. Mach. Learn. Res..

[47]  Georges G. E. Gielen,et al.  CAFFEINE: template-free symbolic model generation of analog circuits via canonical form functions and genetic programming , 2005, Design, Automation and Test in Europe.

[48]  D. Sylvester,et al.  Statistical estimation of leakage current considering inter- and intra-die process variation , 2003, Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03..

[49]  J. J. Moré,et al.  Levenberg--Marquardt algorithm: implementation and theory , 1977 .

[50]  Jeong-Taek Kong,et al.  An efficient statistical analysis methodology and its application to high-density DRAMs , 1997, ICCAD 1997.

[51]  Asen Asenov,et al.  Benchmarking statistical compact modeling strategies for capturing device intrinsic parameter fluctuations in BSIM4 and PSP , 2010 .

[52]  G. Jēkabsons,et al.  Adaptive Basis Function Construction: An Approach for Adaptive Building of Sparse Polynomial Regression Models , 2010 .

[53]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..