Stabilizing inverse problems by internal data. II: non-local internal data and generic linearized uniqueness

[1]  A. Tamasan,et al.  Stable reconstruction of regular 1-Harmonic maps with a given trace at the boundary , 2015 .

[2]  Habib Ammari,et al.  Stability Analysis for Magnetic Resonance Elastography , 2014, 1409.5138.

[3]  K. Hoffmann,et al.  Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography , 2014 .

[4]  Carlos Montalto Conductivity Recovery from One Component of the Current Density , 2014 .

[5]  Giovanni S. Alberti,et al.  Enforcing Local Non-Zero Constraints in PDEs and Applications to Hybrid Imaging Problems , 2014, 1406.3248.

[6]  Otmar Scherzer,et al.  Stability in the linearized problem of quantitative elastography , 2014, 1406.0291.

[7]  G. Alessandrini Global stability for a coupled physics inverse problem , 2014, 1404.1275.

[8]  Peter Kuchment,et al.  The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.

[9]  Guillaume Bal,et al.  Ultrasound-modulated bioluminescence tomography. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  G. Bal,et al.  Hybrid inverse problems for a system of Maxwell’s equations , 2013, 1308.5439.

[11]  Carlos Montalto,et al.  Stability of coupled-physics inverse problems with one internal measurement , 2013, 1306.1978.

[12]  G. Bal,et al.  Inverse anisotropic conductivity from internal current densities , 2013, 1303.6665.

[13]  Guillaume Bal,et al.  Local inversions in ultrasound-modulated optical tomography , 2013, 1303.5178.

[14]  G. Bal,et al.  Linearized internal functionals for anisotropic conductivities , 2013, 1302.3354.

[15]  Hao Gao,et al.  A Hybrid Reconstruction Method for Quantitative PAT , 2013, SIAM J. Imaging Sci..

[16]  O. Scherzer,et al.  The Levenberg-Marquardt Iteration for Numerical Inversion of the Power Density Operator , 2012, 1211.6034.

[17]  G. Bal Hybrid inverse problems and redundant systems of partial differential equations , 2012, 1210.0265.

[18]  G. Bal,et al.  Inverse Anisotropic Conductivity from Power Densities in Dimension n ≥ 3 , 2012, 1208.6029.

[19]  Josselin Garnier,et al.  Resolution and stability analysis in acousto-electric imaging , 2012 .

[20]  G. Bal Cauchy problem for Ultrasound Modulated EIT , 2012, 1201.0972.

[21]  O. Scherzer,et al.  Hybrid tomography for conductivity imaging , 2011, 1112.2958.

[22]  Guillaume Bal,et al.  Reconstruction of Coefficients in Scalar Second‐Order Elliptic Equations from Knowledge of Their Solutions , 2011, 1111.5051.

[23]  G. Bal,et al.  Inverse anisotropic diffusion from power density measurements in two dimensions , 2011, 1110.4606.

[24]  G. Bal,et al.  Inverse diffusion from knowledge of power densities , 2011, 1110.4577.

[25]  Peter Kuchment,et al.  Stabilizing inverse problems by internal data , 2011, 1110.1819.

[26]  Peter Kuchment,et al.  Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.

[27]  Guillaume Bal,et al.  Multi-source quantitative photoacoustic tomography in a diffusive regime , 2011 .

[28]  G. Bal,et al.  Inverse diffusion problems with redundant internal information , 2011, 1106.4277.

[29]  Guillaume Bal,et al.  Quantitative thermo-acoustics and related problems , 2011 .

[30]  Peter Kuchment,et al.  2D and 3D reconstructions in acousto-electric tomography , 2010, 1011.3059.

[31]  G. Bal,et al.  Inverse scattering and acousto-optic imaging. , 2009, Physical review letters.

[32]  Wolfgang Bangerth,et al.  Reconstructions in ultrasound modulated optical tomography , 2009, 0910.2748.

[33]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[34]  Jérôme Fehrenbach,et al.  Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..

[35]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[36]  Plamen Stefanov,et al.  Linearizing non-linear inverse problems and an application to inverse backscattering , 2008, 0809.0270.

[37]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[38]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[39]  P. Gérard,et al.  Implicit function theorems , 2007 .

[40]  G. Alessandrini,et al.  Univalent Σ-harmonic mappings: connections with quasiconformal mappings , 2003 .

[41]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[42]  Louis Nirenberg,et al.  Variational and topological methods in nonlinear problems , 1981 .

[43]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[44]  P. Kuchment,et al.  BANACH BUNDLES AND LINEAR OPERATORS , 1975 .

[45]  V. Solonnikov Overdetermined elliptic boundary-value problems , 1973 .

[46]  Krysztof Maurin,et al.  Abbildungen vom Hilbert-Schmidtschen Typus und ihre Anwendungen. , 1961 .

[47]  Yves Capdeboscq,et al.  On local constraints and regularity of PDE in electromagnetics. Applications to hybrid imaging inverse problems , 2014 .

[48]  Johann Veras Electrical Conductivity Imaging via Boundary Value Problems for the 1-Laplacian , 2014 .

[49]  François Monard,et al.  Taming unstable inverse problems Mathematical routes toward high-resolution medical imaging modalities , 2012 .

[50]  Simon R. Arridge,et al.  Multiple Illumination Quantitative Photoacoustic Tomography using Transport and Diffusion Models , 2011 .

[51]  Z dx,et al.  OVERDETERMINED SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[52]  P. Dudnikov,et al.  Linear Overdetermined Systems of Partial Differential Equations. Initial and Initial-Boundary Value Problems , 1996 .

[53]  R. Laugesen Injectivity can fail for higher-dimensional harmonic extensions , 1996 .

[54]  L. Hörmander,et al.  On the Nash-Moser implicit function theorem , 1985 .

[55]  Louis Nirenberg,et al.  An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .

[56]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[57]  Tosio Kato Perturbation theory for linear operators , 1966 .

[58]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .