Stabilizing inverse problems by internal data. II: non-local internal data and generic linearized uniqueness
暂无分享,去创建一个
[1] A. Tamasan,et al. Stable reconstruction of regular 1-Harmonic maps with a given trace at the boundary , 2015 .
[2] Habib Ammari,et al. Stability Analysis for Magnetic Resonance Elastography , 2014, 1409.5138.
[3] K. Hoffmann,et al. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography , 2014 .
[4] Carlos Montalto. Conductivity Recovery from One Component of the Current Density , 2014 .
[5] Giovanni S. Alberti,et al. Enforcing Local Non-Zero Constraints in PDEs and Applications to Hybrid Imaging Problems , 2014, 1406.3248.
[6] Otmar Scherzer,et al. Stability in the linearized problem of quantitative elastography , 2014, 1406.0291.
[7] G. Alessandrini. Global stability for a coupled physics inverse problem , 2014, 1404.1275.
[8] Peter Kuchment,et al. The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.
[9] Guillaume Bal,et al. Ultrasound-modulated bioluminescence tomography. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] G. Bal,et al. Hybrid inverse problems for a system of Maxwell’s equations , 2013, 1308.5439.
[11] Carlos Montalto,et al. Stability of coupled-physics inverse problems with one internal measurement , 2013, 1306.1978.
[12] G. Bal,et al. Inverse anisotropic conductivity from internal current densities , 2013, 1303.6665.
[13] Guillaume Bal,et al. Local inversions in ultrasound-modulated optical tomography , 2013, 1303.5178.
[14] G. Bal,et al. Linearized internal functionals for anisotropic conductivities , 2013, 1302.3354.
[15] Hao Gao,et al. A Hybrid Reconstruction Method for Quantitative PAT , 2013, SIAM J. Imaging Sci..
[16] O. Scherzer,et al. The Levenberg-Marquardt Iteration for Numerical Inversion of the Power Density Operator , 2012, 1211.6034.
[17] G. Bal. Hybrid inverse problems and redundant systems of partial differential equations , 2012, 1210.0265.
[18] G. Bal,et al. Inverse Anisotropic Conductivity from Power Densities in Dimension n ≥ 3 , 2012, 1208.6029.
[19] Josselin Garnier,et al. Resolution and stability analysis in acousto-electric imaging , 2012 .
[20] G. Bal. Cauchy problem for Ultrasound Modulated EIT , 2012, 1201.0972.
[21] O. Scherzer,et al. Hybrid tomography for conductivity imaging , 2011, 1112.2958.
[22] Guillaume Bal,et al. Reconstruction of Coefficients in Scalar Second‐Order Elliptic Equations from Knowledge of Their Solutions , 2011, 1111.5051.
[23] G. Bal,et al. Inverse anisotropic diffusion from power density measurements in two dimensions , 2011, 1110.4606.
[24] G. Bal,et al. Inverse diffusion from knowledge of power densities , 2011, 1110.4577.
[25] Peter Kuchment,et al. Stabilizing inverse problems by internal data , 2011, 1110.1819.
[26] Peter Kuchment,et al. Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.
[27] Guillaume Bal,et al. Multi-source quantitative photoacoustic tomography in a diffusive regime , 2011 .
[28] G. Bal,et al. Inverse diffusion problems with redundant internal information , 2011, 1106.4277.
[29] Guillaume Bal,et al. Quantitative thermo-acoustics and related problems , 2011 .
[30] Peter Kuchment,et al. 2D and 3D reconstructions in acousto-electric tomography , 2010, 1011.3059.
[31] G. Bal,et al. Inverse scattering and acousto-optic imaging. , 2009, Physical review letters.
[32] Wolfgang Bangerth,et al. Reconstructions in ultrasound modulated optical tomography , 2009, 0910.2748.
[33] Guillaume Bal,et al. Inverse diffusion theory of photoacoustics , 2009, 0910.2503.
[34] Jérôme Fehrenbach,et al. Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..
[35] Otmar Scherzer,et al. Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..
[36] Plamen Stefanov,et al. Linearizing non-linear inverse problems and an application to inverse backscattering , 2008, 0809.0270.
[37] Eric Bonnetier,et al. Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..
[38] Lihong V. Wang,et al. Biomedical Optics: Principles and Imaging , 2007 .
[39] P. Gérard,et al. Implicit function theorems , 2007 .
[40] G. Alessandrini,et al. Univalent Σ-harmonic mappings: connections with quasiconformal mappings , 2003 .
[41] Michael Taylor,et al. Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .
[42] Louis Nirenberg,et al. Variational and topological methods in nonlinear problems , 1981 .
[43] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[44] P. Kuchment,et al. BANACH BUNDLES AND LINEAR OPERATORS , 1975 .
[45] V. Solonnikov. Overdetermined elliptic boundary-value problems , 1973 .
[46] Krysztof Maurin,et al. Abbildungen vom Hilbert-Schmidtschen Typus und ihre Anwendungen. , 1961 .
[47] Yves Capdeboscq,et al. On local constraints and regularity of PDE in electromagnetics. Applications to hybrid imaging inverse problems , 2014 .
[48] Johann Veras. Electrical Conductivity Imaging via Boundary Value Problems for the 1-Laplacian , 2014 .
[49] François Monard,et al. Taming unstable inverse problems Mathematical routes toward high-resolution medical imaging modalities , 2012 .
[50] Simon R. Arridge,et al. Multiple Illumination Quantitative Photoacoustic Tomography using Transport and Diffusion Models , 2011 .
[51] Z dx,et al. OVERDETERMINED SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .
[52] P. Dudnikov,et al. Linear Overdetermined Systems of Partial Differential Equations. Initial and Initial-Boundary Value Problems , 1996 .
[53] R. Laugesen. Injectivity can fail for higher-dimensional harmonic extensions , 1996 .
[54] L. Hörmander,et al. On the Nash-Moser implicit function theorem , 1985 .
[55] Louis Nirenberg,et al. An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .
[56] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[57] Tosio Kato. Perturbation theory for linear operators , 1966 .
[58] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .