Option pricing and hedging for optimized Lévy driven stochastic volatility models

Abstract This paper pays attention to Ornstein-Uhlenbeck (OU) based stochastic volatility models with marginal law given by Classical Tempered Stable (CTS) distribution and Normal Inverse Gaussian (NIG) distribution, which are subclasses of infinite activity Levy processes and are compared to finite activity Barndorff-Nielsen and Shephard (BNS) model. They are applied to option pricing and hedging in capturing leptokurtic features in asset returns and clustering effect in volatility that are consistently observed phenomena in underlying asset dynamics. The analytical formula of option pricing can be obtained through use of characteristic functions and Fast Fourier Transform (FFT) technique. Additionally, we introduce two hybrid optimization techniques such as hybrid Particle Swarm optimization (PSO) algorithm and hybrid Differential Evolution (DE) algorithm into parameters calibration schemes to improve the calibration quality for newly constructed models. Finally, we conduct experiments on Chinese emerging option markets to examine the performance of proposed models exploiting hybrid optimization techniques.

[1]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[2]  R. Lord,et al.  Optimal Fourier Inversion in Semi-Analytical Option Pricing , 2007 .

[3]  Cornelis W. Oosterlee,et al.  Fast Valuation and Calibration of Credit Default Swaps Under Levy Dynamics , 2009 .

[4]  Shenghong Li,et al.  Option pricing and hedging in incomplete market driven by Normal Tempered Stable process with stochastic volatility , 2015 .

[5]  Xiaoping Yang,et al.  Pricing Asian options in a stochastic volatility model with jumps , 2014, Appl. Math. Comput..

[6]  Frank J. Fabozzi,et al.  Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads , 2015 .

[7]  Reiichiro Kawai,et al.  Infinite Variation Tempered Stable Ornstein–Uhlenbeck Processes with Discrete Observations , 2010, Commun. Stat. Simul. Comput..

[8]  Frank J. Fabozzi,et al.  Option pricing under stochastic volatility and tempered stable Lévy jumps , 2014 .

[9]  Andreas Kaeck,et al.  Stochastic Volatility Jump‐Diffusions for European Equity Index Dynamics , 2013 .

[10]  Option pricing with time-changed Lévy processes , 2013 .

[11]  Carlo Favero,et al.  A Spectral Estimation of Tempered Stable Stochastic Volatility Models and Option Pricing , 2010, Comput. Stat. Data Anal..

[12]  Seung-Ho Yang,et al.  Multi-basin particle swarm intelligence method for optimal calibration of parametric Lévy models , 2012, Expert Syst. Appl..

[13]  Giovanni Bonanno,et al.  Role of noise in a market model with stochastic volatility , 2006 .

[14]  J. Rosínski Tempering stable processes , 2007 .

[15]  Stefan Tappe,et al.  Tempered stable distributions and processes , 2013, 1907.05141.

[16]  Bernardo Spagnolo,et al.  Volatility Effects on the Escape Time in Financial Market Models , 2008, Int. J. Bifurc. Chaos.

[17]  N. Shephard,et al.  Some recent developments in stochastic volatility modelling , 2002 .

[18]  Weijun Xu,et al.  A new fuzzy programming approach for multi-period portfolio optimization with return demand and risk control , 2014, Fuzzy Sets Syst..

[19]  Variance-Optimal Hedging for Time-Changed Lévy Processes , 2011 .

[20]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[21]  Haitao Li,et al.  MCMC ESTIMATION OF LÉVY JUMP MODELS USING STOCK AND OPTION PRICES , 2011 .

[22]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[23]  Viktor Todorov,et al.  Econometric analysis of jump-driven stochastic volatility models , 2011 .

[24]  Jean Jacod,et al.  Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.

[25]  K. Dowd,et al.  Option pricing under non-normality: a comparative analysis , 2013 .

[26]  Ibrahim Abdelrazeq Model verification for Lévy-driven Ornstein–Uhlenbeck processes with estimated parameters , 2015 .

[27]  Sandra Paterlini,et al.  Multiobjective optimization using differential evolution for real-world portfolio optimization , 2011, Comput. Manag. Sci..

[28]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[29]  Narayana Prasad Padhy,et al.  Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design , 2007 .

[30]  Nikolai Leonenko,et al.  Simulation of Lévy-driven Ornstein-Uhlenbeck processes with given marginal distribution , 2009, Comput. Stat. Data Anal..

[31]  S. Rachev,et al.  Time series analysis for financial market meltdowns , 2011 .

[32]  Giovanni Bonanno,et al.  Hitting time distributions in financial markets , 2007 .

[33]  G. Bonanno,et al.  Mean escape time in a system with stochastic volatility. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  P. Winker,et al.  Combining Forecasts with Missing Data: Making Use of Portfolio Theory , 2014 .

[35]  Bernardo Spagnolo,et al.  Lévy Flight Superdiffusion: an Introduction , 2008, Int. J. Bifurc. Chaos.

[36]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[37]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[38]  W. Schoutens,et al.  THE PRICING OF EXOTIC OPTIONS BY MONTE–CARLO SIMULATIONS IN A LÉVY MARKET WITH STOCHASTIC VOLATILITY , 2003 .

[39]  Drew D. Creal Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models , 2008, Comput. Stat. Data Anal..

[40]  Wenli Zhu,et al.  Option pricing using the fast Fourier transform under the double exponential jump model with stochastic volatility and stochastic intensity , 2014, J. Comput. Appl. Math..