On the restricted arc-connectivity of s-geodetic digraphs

For a strongly connected digraph D the restricted arc-connectivity λ′(D) is defined as the minimum cardinality of an arc-cut over all arc-cuts S satisfying that D - S has a non-trivial strong component D1 such that D-V (D1) contains an arc. Let S be a subset of vertices of D. We denote by ω+(S) the set of arcs uv with u ∈ S and v ∉ S, and by ω−(S) the set of arcs uv with u ∉ S and v ∈ S. A digraph D = (V,A) is said to be λ′-optimal if λ′(D) = ξ′(D), where ξ′(D) is the minimum arc-degree of D defined as ξ(D) = min{ξ′(xy): xy ∈ A}, and ξ′(xy) = min{|ω+({x, y})|, |ω−({x, y})|, |ω+(x) ∪ ω−(y)|, |ω-(x)∪ω+(y)|}. In this paper a sufficient condition for a s-geodetic strongly connected digraph D to be λ′-optimal is given in terms of its diameter. Furthermore we see that the h-iterated line digraph Lh(D) of a s-geodetic digraph is λ′-optimal for certain iteration h.

[1]  C. Wang,et al.  Semisymmetric cubic graphs as regular covers of K3,3 , 2008 .

[2]  Yahya Ould Hamidoune A property of a-fragments of a digraph , 1980, Discret. Math..

[3]  Miguel Angel Fiol,et al.  Extraconnectivity of graphs with large girth , 1994, Discret. Math..

[4]  Miguel Angel Fiol,et al.  Distance connectivity in graphs and digraphs , 1996 .

[5]  Zhao Zhang,et al.  A proof of an inequality concerning k-restricted edge connectivity , 2005, Discret. Math..

[6]  Yahya Ould Hamidoune Sur la separation dans les graphes de Cayley abeliens , 1985, Discret. Math..

[8]  Miguel Angel Fiol,et al.  On the order and size of s-geodetic digraphs with given connectivity , 1997, Discret. Math..

[9]  Angelika Hellwig,et al.  Maximally edge-connected and vertex-connected graphs and digraphs: A survey , 2008, Discret. Math..

[10]  Miguel Angel Fiol,et al.  On the extraconnectivity of graphs , 1996, Discret. Math..

[11]  Camino Balbuena,et al.  Diameter-girth sufficient conditions for optimal extraconnectivity in graphs , 2008, Discret. Math..

[12]  Lutz Volkmann,et al.  Restricted arc-connectivity of digraphs , 2007, Inf. Process. Lett..

[13]  Shiying Wang,et al.  λ'-optimal digraphs , 2008 .

[14]  Camino Balbuena Extraconnectivity of s-geodetic digraphs and graphs , 1999, Discret. Math..

[15]  Miguel Angel Fiol,et al.  Line Digraph Iterations and the (d, k) Digraph Problem , 1984, IEEE Transactions on Computers.

[16]  Frank Harary,et al.  Connectivity in digraphs , 1971 .

[17]  S. Louis Hakimi,et al.  On Computing a Conditional Edge-Connectivity of a Graph , 1988, Inf. Process. Lett..

[18]  Camino Balbuena,et al.  Numbers of edges in supermagic graphs , 2006 .

[19]  Jianping Ou,et al.  Edge cuts leaving components of order at least m , 2005, Discret. Math..

[20]  Frank Harary,et al.  Graph Theory , 2016 .

[21]  Bao Gang Xu,et al.  A structural theorem on embedded graphs and its application to colorings , 2009 .

[22]  Qiao Li,et al.  Conditional edge connectivity properties, reliability comparisons and transitivity of graphs , 2002, Discret. Math..

[23]  M. Aigner On the linegraph of a directed graph , 1967 .

[24]  Miguel Angel Fiol,et al.  Extraconnectivity of graphs with large minimum degree and girth , 1997, Discret. Math..

[25]  Jun-Ming Xu,et al.  On restricted edge-connectivity of graphs , 2002, Discret. Math..