A fresh isotopic look at Greenland kimberlites: Cratonic mantle lithosphere imprint on deep source signal

[1]  W. Griffin,et al.  The Kimberlites and related rocks of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa , 2011 .

[2]  R. Romer,et al.  Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere , 2010 .

[3]  A. Luguet,et al.  Formation of the North Atlantic Craton: Timing and mechanisms constrained from Re–Os isotope and PGE data of peridotite xenoliths from S.W. Greenland , 2010 .

[4]  A. Sobolev,et al.  Olivine, and the Origin of Kimberlite , 2010 .

[5]  L. Heaman,et al.  Diamondiferous kimberlites in central India synchronous with Deccan flood basalts , 2010 .

[6]  R. Creaser,et al.  Timing of kimberlite, carbonatite, and ultramafic lamprophyre emplacement in the alkaline province located 64°–67° N in southern West Greenland , 2009 .

[7]  A. Rosenthal,et al.  The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar , 2009 .

[8]  J. Woodhead,et al.  Identifying the asthenospheric component of kimberlite magmas from the Dharwar Craton, India , 2009 .

[9]  A. Steenfelt,et al.  The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite-kimberlite relationships , 2009 .

[10]  B. Kjarsgaard,et al.  Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem , 2009 .

[11]  D. Frei,et al.  Kimberlite and related rocks from Garnet Lake, West Greenland, including their mantle constituents, diamond occurrence, age and provenance , 2009 .

[12]  K. Sand,et al.  The lithospheric mantle below southern West Greenland: A geothermobarometric approach to diamond potential and mantle stratigraphy , 2009 .

[13]  K. Sand,et al.  Distribution of kimberlite and aillikite in the Diamond Province of southern West Greenland: A regional perspective based on groundmass mineral chemistry and bulk compositions , 2009 .

[14]  K. Sand,et al.  Provinces of ultramafic lamprophyre dykes, kimberlite dykes and carbonatite in West Greenland characterised by minerals and chemical components in surface media , 2009 .

[15]  H. Grütter,et al.  Constraints on deep mantle tenor of Sarfartoq-area kimberlites (Greenland), based on modern thermobarometry of mantle-derived xenocrysts , 2009 .

[16]  W. McDonough,et al.  Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts , 2009 .

[17]  B. Windley,et al.  Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archean with modern analogues , 2009 .

[18]  C. Ottley,et al.  Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland , 2008 .

[19]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[20]  K. Sand,et al.  THE MAJUAGAA KIMBERLITE DIKE, MANIITSOQ REGION, WEST GREENLAND: CONSTRAINTS ON AN Mg-RICH SILICOCARBONATITIC MELT COMPOSITION FROM GROUNDMASS MINERALOGY AND BULK COMPOSITIONS , 2008 .

[21]  B. Kjarsgaard,et al.  PARAGENETIC TYPES OF CARBONATITE AS INDICATED BY THE DIVERSITY AND RELATIVE ABUNDANCES OF ASSOCIATED SILICATE ROCKS: EVIDENCE FROM A GLOBAL DATABASE , 2008 .

[22]  B. Kjarsgaard,et al.  Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes , 2008 .

[23]  R. Romer,et al.  Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics , 2008 .

[24]  Y. Lahaye,et al.  Experimental Melting of Carbonated Peridotite at 6-10 GPa , 2007 .

[25]  B. Kjarsgaard,et al.  Stable isotope composition of magmatic and deuteric carbonate phases in hypabyssal kimberlite, Lac de Gras field, Northwest Territories, Canada , 2007 .

[26]  M. Bizzarro,et al.  Constraints on source-forming processes of West Greenland kimberlites inferred from Hf-Nd isotope systematics. , 2007 .

[27]  B. Kjarsgaard,et al.  Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives , 2007 .

[28]  R. Carlson,et al.  A comparison of Siberian meimechites and kimberlites: Implications for the source of high‐Mg alkalic magmas and flood basalts , 2006 .

[29]  B. Kjarsgaard,et al.  Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton , 2006 .

[30]  B. Upton,et al.  Ocean-island basalt–like source of kimberlite magmas from West Greenland revealed by high 3He/4He ratios , 2006 .

[31]  R. H. Mitchell CARBONATITES AND CARBONATITES AND CARBONATITES , 2005 .

[32]  B. Kjarsgaard,et al.  Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications , 2005 .

[33]  G. Gudfinnsson,et al.  Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa , 2005 .

[34]  E. Belousova,et al.  Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas , 2005 .

[35]  R. Mitchell Experimental studies At 5–12 GPa of the Ondermatjie hypabyssal kimberlite , 2004 .

[36]  R. Carlson,et al.  Hf Isotope Systematics of Kimberlites and their Megacrysts: New Constraints on their Source Regions , 2004 .

[37]  G. Rossman,et al.  Abundance and Partitioning of OH in a High-pressure Magmatic System: Megacrysts from the Monastery Kimberlite, South Africa , 2004 .

[38]  D. Bell,et al.  Petrogenesis of Group I Kimberlites from Kimberley, South Africa: Evidence from Bulk-rock Geochemistry , 2003 .

[39]  J. Dawson,et al.  The brevity of carbonatite sources in the mantle: evidence from Hf isotopes , 2003 .

[40]  R. Carlson,et al.  A Chemical and Multi-Isotope Study of the Western Cape Olivine Melilitite Province, South Africa: Implications for the Sources of Kimberlites and the Origin of the HIMU Signature in Africa , 2002 .

[41]  D. Pearson,et al.  The continental lithospheric mantle: characteristics and significance as a mantle reservoir , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  P. Deines The carbon isotope geochemistry of mantle xenoliths , 2002 .

[43]  M. Bizzarro,et al.  Hf isotope evidence for a hidden mantle reservoir , 2002 .

[44]  M. Grégoire,et al.  Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited , 2002 .

[45]  K. Mezger,et al.  Calibration of the Lutetium-Hafnium Clock , 2001, Science.

[46]  R. Stevenson,et al.  Petrology of the Abloviak Aillikite dykes, New Québec: evidence for a Cambrian diamondiferous alkaline province in northeastern North America , 2000 .

[47]  Barth,et al.  Rutile-bearing refractory eclogites: missing link between continents and depleted mantle , 2000, Science.

[48]  L. Larsen,et al.  Mineralogy of ultramafic dikes from the Sarfartoq, Sisimiut and Maniitsoq areas, West Greenland , 1999 .

[49]  F. Albarède,et al.  Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system , 1999 .

[50]  D. C. Presnall,et al.  The Continuum of Primary Carbonatitic-Kimberlitic Melt Compositions in Equilibrium with Lherzolite: Data from the System CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa , 1998 .

[51]  J. Konzett Phase relations and chemistry of Ti-rich K-richterite-bearing mantle assemblages: an experimental study to 8.0 GPa in a Ti-KNCMASH system , 1997 .

[52]  F. Albarède,et al.  Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS , 1997 .

[53]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[54]  A. Girnis,et al.  Origin of Group 1A kimberlites: Fluid-saturated melting experiments at 45–55 kbar , 1995 .

[55]  D. McKenzie,et al.  The Generation of Kimberlites, Lamproites, and their Source Rocks , 1994 .

[56]  W. Hibberson,et al.  Kimberlite melting relations revisited , 1994 .

[57]  S. Foley Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas , 1992 .

[58]  L. Larsen,et al.  A review of the 2500 Ma span of alkaline-ultramafic, potassic and carbonatitic magmatism in West Greenland , 1992 .

[59]  A. E. Ringwood,et al.  Origin of kimberlites and related magmas , 1992 .

[60]  M. Thirlwall Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis , 1991 .

[61]  R. Mitchell,et al.  Petrology of Lamproites , 1991 .

[62]  D. Nelson Isotopic characteristics and petrogenesis of the lamproites and kimberlites of central west Greenland , 1989 .

[63]  A. P. Roex,et al.  Geochemical correlation between southern African kimberlites and South Atlantic hotspots , 1986, Nature.

[64]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[65]  D. McKenzie The extraction of magma from the crust and mantle , 1985 .

[66]  S. Goldstein,et al.  A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems , 1984 .

[67]  Craig B. Smith Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites , 1983, Nature.

[68]  J. Minster,et al.  Absolute age of formation of chondrites studied by the 87Rb–87Sr method , 1982, Nature.

[69]  P. Wyllie The origin of kimberlite , 1980 .

[70]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites , 1980 .

[71]  K. Marti,et al.  Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle , 1978 .

[72]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[73]  J. Watson,et al.  A Discussion on the evolution of the Precambrian crust - The Archaean craton of the North Atlantic region , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[74]  W. Griffin,et al.  Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle , 2005 .

[75]  W. Griffin,et al.  The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites , 2000 .

[76]  P. Deines Stable isotope variations in carbonatites , 1989 .

[77]  K. Bell Carbonatites : genesis and evolution , 1989 .

[78]  P. Hoffman,et al.  United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia , 1988 .

[79]  A. Chivas,et al.  Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources , 1988 .