A Multivariate Approach Towards Interarea Oscillation Damping Estimation Under Ambient Conditions Via Independent Component Analysis and Random Decrement

This paper presents a novel approach to the monitoring of interarea oscillation frequency and damping using multivariate analysis techniques. A two-step method is presented 1) independent component analysis for the detection of interarea modes and estimation of their frequencies and 2) random decrement for the estimation of mode damping. The method is applied to real measurements taken in Finland within the Nordic Power System to estimate the critical interarea mode frequency and damping in the system.

[1]  Ahsan Kareem,et al.  RELIABILITY OF RANDOM DECREMENT TECHNIQUE FOR ESTIMATES OF STRUCTURAL DAMPING , 2000 .

[2]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[3]  E. Oja,et al.  Independent Component Analysis , 2013 .

[4]  C. S. Chang Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures , 1975 .

[5]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[6]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[7]  H. A. Cole Failure detection of a space shuttle wing flutter model by random decrement , 1971 .

[8]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[9]  Arturo Roman Messina,et al.  Inter-area Oscillations in Power Systems , 2009 .

[10]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[11]  J. F. Hauer,et al.  Initial results in Prony analysis of power system response signals , 1990 .

[12]  Arturo Roman Messina,et al.  Inter-area Oscillations in Power Systems: A Nonlinear and Nonstationary Perspective , 2009 .

[13]  J.W. Pierre,et al.  Use of least-mean squares (LMS) adaptive filtering technique for estimating low-frequency electromechanical modes in power systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[14]  S. R. Ibrahim Random Decrement Technique for Modal Identification of Structures , 1977 .

[15]  Chunming Xia,et al.  Isolating multiple sources of plant-wide oscillations via independent component analysis , 2003 .

[16]  Poul Henning Kirkegaard,et al.  Identification of Dynamical Properties from Correlation Function Estimates , 1992 .

[17]  S. R. Ibrahim,et al.  STATISTICAL THEORY OF THE VECTOR RANDOM DECREMENT TECHNIQUE , 1999 .

[18]  J. W. Pierre,et al.  Use of ARMA Block Processing for Estimating Stationary Low-Frequency Electromechanical Modes of Power Systems , 2002, IEEE Power Engineering Review.

[19]  A.R. Messina,et al.  A Refined Hilbert–Huang Transform With Applications to Interarea Oscillation Monitoring , 2009, IEEE Transactions on Power Systems.

[20]  Mats Larsson,et al.  Monitoring of inter-area oscillations under ambient conditions using subspace identification , 2009, 2009 IEEE Power & Energy Society General Meeting.

[21]  A. R. Messina,et al.  A refined Hilbert-Huang transform with applications to inter-area oscillation monitoring , 2009 .

[22]  H. A. Cole,et al.  On-line failure detection and damping measurement of aerospace structures by random decrement signatures , 1973 .

[23]  Arun G. Phadke,et al.  Synchronized Phasor Measurements and Their Applications , 2008 .

[24]  Li Qi,et al.  Prony Analysis for Power System Transient Harmonics , 2007, EURASIP J. Adv. Signal Process..