Review of Micro Thermoelectric Generator

Used for thermal energy harvesting, thermoelectric generator (TEG) can convert heat into electricity directly. Structurally, the main part of TEG is the thermopile, which consists of thermocouples connected in series electrically and in parallel thermally. Benefiting from massive progress achieved in a microelectromechanical systems technology, micro TEG (<inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG) with advantages of small volume and high output voltage has obtained attention in recent 20 years. The review gives a comprehensive survey of the development and current status of <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG. First, the principle of operation is introduced and some key parameters used for characterizing the performance of <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG are highlighted. Next, <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEGs are classified from the perspectives of structure, material, and fabrication technology. Then, almost all the relevant works are summarized for the convenience of comparison and reference. Summarized information includes the structure, material property, fabrication technology, output performance, and so on. This will provide readers with an overall evaluation of different studies and guide them in choosing the suitable <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEGs for their applications. In addition, the existing and potential applications of <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG are shown, especially the applications in the Internet of things. Finally, we summarize the challenges encountered in improving the output power of <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG and predicted that more researchers would focus their efforts on the flexible structure <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG, and combination of <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG and other energy harvestings. With the emergence of more low-power devices and the gradual improvement of <italic>ZT</italic> value of the thermoelectric material, <inline-formula> <tex-math notation="LaTeX">$\mu$ </tex-math></inline-formula>-TEG is promising for applications in various fields. [2017-0610]

[1]  Chih Wu Analysis of waste-heat thermoelectric power generators , 1996 .

[2]  Christofer Hierold,et al.  Optimization and fabrication of thick flexible polymer based micro thermoelectric generator , 2006 .

[3]  Yi Wang,et al.  Significant performance improvement for micro-thermoelectric energy generator based on system analysis , 2015 .

[4]  Cronin B. Vining,et al.  ZT ~ 3.5: Fifteen Years of Progress and Things to Come , 2007 .

[5]  Norbert Kockmann,et al.  Design and fabrication of MEMS thermoelectric generators with high temperature efficiency , 2008 .

[6]  J. Nurnus,et al.  New high density micro structured thermogenerators for stand alone sensor systems , 2007, 2007 26th International Conference on Thermoelectrics.

[7]  Adnan Harb,et al.  Energy harvesting: State-of-the-art , 2011 .

[8]  D. Crane,et al.  Progress Towards Maximizing the Performance of a Thermoelectric Power Generator , 2006, 2006 25th International Conference on Thermoelectrics.

[9]  Peter Woias,et al.  Design and Characterization of Micro Thermoelectric Cross-Plane Generators With Electroplated ${\rm Bi}_{2}{\rm Te}_{3}$ , ${\rm Sb}_{x}{\rm Te}_{y}$ , and Reflow Soldering , 2014, Journal of Microelectromechanical Systems.

[10]  João Paulo Pereira do Carmo,et al.  Thermoelectric Microconverter for Energy Harvesting Systems , 2010, IEEE Transactions on Industrial Electronics.

[11]  Shih-Ming Yang,et al.  Application of quantum well-like thermocouple to thermoelectric energy harvester by BiCMOS process , 2011 .

[12]  W. Qu,et al.  Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems , 2001 .

[13]  Il-Ho Kim,et al.  (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators , 2000 .

[14]  Christopher A. Apblett,et al.  Improving Power Density and Efficiency of Miniature Radioisotopic Thermoelectric Generators. , 2008 .

[15]  Wen H. Ko,et al.  Trends and frontiers of MEMS , 2007 .

[16]  Toshihide Kamata,et al.  Flexible and lightweight thermoelectric generators composed of carbon nanotube–polystyrene composites printed on film substrate , 2013 .

[17]  Seeram Ramakrishna,et al.  A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials , 2013 .

[18]  Gao Min,et al.  Evaluation of thermoelectric modules for power generation , 1998 .

[19]  John E. Bowers,et al.  Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices , 2012, Journal of Electronic Materials.

[20]  G. J. Snyder,et al.  Thermoelectric Energy Harvesting , 2009 .

[21]  Jack W. Judy,et al.  Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[22]  Juekuan Yang,et al.  A High Power Density Micro-Thermoelectric Generator Fabricated by an Integrated Bottom-Up Approach , 2016, Journal of Microelectromechanical Systems.

[23]  Holger Kleinke,et al.  New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides† , 2010 .

[24]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[25]  H. Bottner,et al.  New thermoelectric components using microsystem technologies , 2004, Journal of Microelectromechanical Systems.

[26]  Shih-Ming Yang,et al.  Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process , 2009 .

[27]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[28]  Noel Y. A. Shammas,et al.  A Review of Thermoelectric MEMS Devices for Micro-power Generation, Heating and Cooling Applications , 2009 .

[29]  Harald Böttner,et al.  Thermoelectric micro devices: current state, recent developments and future aspects for technological progress and applications , 2002 .

[30]  Chengkuo Lee,et al.  Characterization of heavily doped polysilicon films for CMOS-MEMS thermoelectric power generators , 2009 .

[31]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[32]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[33]  Chris Van Hoof,et al.  Realization of a wearable miniaturized thermoelectric generator for human body applications , 2009 .

[34]  W Greatbatch,et al.  A Pu238O2 nuclear power source for implantable cardiac pacemakers. , 1973, IEEE transactions on bio-medical engineering.

[35]  D. Rowe Thermoelectrics Handbook , 2005 .

[36]  R. Vullers,et al.  Wearable Thermoelectric Generators for Body-Powered Devices , 2009 .

[37]  Marc Hodes Optimal Pellet Geometries for Thermoelectric Power Generation , 2006 .

[38]  Gao Min,et al.  Recent concepts in thermoelectric power generation , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[39]  R. Venkatasubramanian,et al.  Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors , 2005, ICT 2005. 24th International Conference on Thermoelectrics, 2005..

[40]  M. Koplow,et al.  Thick film thermoelectric energy harvesting systems for biomedical applications , 2008, 2008 5th International Summer School and Symposium on Medical Devices and Biosensors.

[41]  Ctirad Uher,et al.  Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe , 2016, Nature Communications.

[42]  Luis Fonseca,et al.  Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices , 2012 .

[43]  David Michael Rowe,et al.  The design and fabrication of a miniature thermoelectric generator using MOS processing techniques , 1994 .

[44]  A. Majumdar,et al.  Enhanced Thermoelectric Performance of Rough Silicon Nanowires. , 2008 .

[45]  C. Van Hoof,et al.  Thermoelectric MEMS generators as a power supply for a body area network , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[46]  Walter Lang,et al.  A thermoelectric converter for energy supply , 1999 .

[47]  Aliakbar Akbarzadeh,et al.  Analysis of a symbiotic thermoelectric system for power generation and liquid preheating , 2014 .

[48]  Vladimir Leonov,et al.  A batch process micromachined thermoelectric energy harvester: fabrication and characterization , 2010 .

[49]  Masayoshi Esashi,et al.  Microfabrication of thermoelectric materials by silicon molding process , 2003 .

[50]  Chengkuo Lee,et al.  Design, Fabrication, and Characterization of CMOS MEMS-Based Thermoelectric Power Generators , 2010, Journal of Microelectromechanical Systems.

[51]  M. Stordeur,et al.  Low power thermoelectric generator-self-sufficient energy supply for micro systems , 1997, XVI ICT '97. Proceedings ICT'97. 16th International Conference on Thermoelectrics (Cat. No.97TH8291).

[52]  Naveen Verma,et al.  Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.

[53]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[54]  O. Paul,et al.  Test structures to measure the Seebeck coefficient of CMOS IC polysilicon , 1996, Proceedings of International Conference on Microelectronic Test Structures.

[55]  Hongxia Xi,et al.  Development and applications of solar-based thermoelectric technologies , 2007 .

[56]  Ching-Liang Dai,et al.  Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators , 2010, Sensors.

[57]  K. Buddharaju,et al.  Chip-Level Thermoelectric Power Generators Based on High-Density Silicon Nanowire Array Prepared With Top-Down CMOS Technology , 2011, IEEE Electron Device Letters.

[58]  Hiroshi Tsukamoto,et al.  Fabrication and characterization of bismuth–telluride-based alloy thin film thermoelectric generators by flash evaporation method , 2007 .

[59]  Aime Lay-Ekuakille,et al.  Thermoelectric generator design based on power from body heat for biomedical autonomous devices , 2009, 2009 IEEE International Workshop on Medical Measurements and Applications.

[60]  T. Hui Teo,et al.  Ultra Low-Power Sensor Node for Wireless Health Monitoring System , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[61]  Giovanni Pennelli,et al.  Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives , 2015 .

[62]  Javier Rodríguez-Viejo,et al.  Micropower thermoelectric generator from thin Si membranes , 2014 .

[63]  G. J. Snyder,et al.  Thick-film thermoelectric microdevices , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[64]  B. Otis,et al.  PicoRadios for wireless sensor networks: the next challenge in ultra-low power design , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[65]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[66]  Xiaolong Gou,et al.  Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system , 2010 .

[67]  J. M. Gilbert,et al.  Comparison of energy harvesting systems for wireless sensor networks , 2008, Int. J. Autom. Comput..

[68]  Yida Li,et al.  Improved Vertical Silicon Nanowire Based Thermoelectric Power Generator With Polyimide Filling , 2012, IEEE Electron Device Letters.

[69]  G. J. Snyder,et al.  Thermoelectric microdevice fabricated by a MEMS-like electrochemical process , 2003, Nature materials.

[70]  Mildred S Dresselhaus,et al.  When thermoelectrics reached the nanoscale. , 2013, Nature nanotechnology.

[71]  W. Weber,et al.  Enabling technologies for disappearing electronics in smart textiles , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[72]  Androula G. Nassiopoulou,et al.  A Thermoelectric Generator Using Porous Si Thermal Isolation , 2013, Sensors.

[73]  Shih-Ming Yang,et al.  Design and verification of a thermoelectric energy harvester with stacked polysilicon thermocouples by CMOS process , 2010 .

[74]  Wilfried Haensch,et al.  Solar-powering the Internet of Things , 2016, Science.

[75]  C. Van Hoof,et al.  Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes , 2007, IEEE Sensors Journal.

[76]  M. Strasser,et al.  Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining , 2002 .

[77]  Saffa Riffat,et al.  Thermoelectrics: a review of present and potential applications , 2003 .

[78]  Muhammad Mustafa Hussain,et al.  Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications , 2017 .

[79]  Chris Van Hoof,et al.  Characterization and optimization of polycrystalline Si70%Ge30% for surface micromachined thermopiles in human body applications , 2009 .

[80]  Zheng Yuan,et al.  Silicon-Based Monolithic Planar Micro Thermoelectric Generator Using Bonding Technology , 2017, Journal of Microelectromechanical Systems.

[81]  Yang Kuang,et al.  Energy harvesting during human walking to power a wireless sensor node , 2017 .

[82]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[83]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[84]  P. Detemple,et al.  Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics , 2006 .

[85]  C. Yuen,et al.  Review on energy harvesting and energy management for sustainable wireless sensor networks , 2011, 2011 IEEE 13th International Conference on Communication Technology.

[86]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[87]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[88]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[89]  G. Wachutka,et al.  Micromachined CMOS thermoelectric generators as on-chip power supply , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[90]  M. Kishi,et al.  Micro thermoelectric modules and their application to wristwatches as an energy source , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[91]  Vladimir Leonov,et al.  Characterization of a Bulk-Micromachined Membraneless In-Plane Thermopile , 2011 .

[92]  E. Schwyter,et al.  $\hbox{Bi}_{2}\hbox{Te}_{3}$-Based Flexible Micro Thermoelectric Generator With Optimized Design , 2009, Journal of Microelectromechanical Systems.

[93]  Wei Li,et al.  Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey , 2014, J. Sensors.

[94]  Dong-Hi Lee,et al.  Characteristics of thin-film thermoelectric devices for power generation , 1997 .

[95]  R. Venkatasubramanian,et al.  Energy Harvesting for Electronics with Thermoelectric Devices using Nanoscale Materials , 2007, 2007 IEEE International Electron Devices Meeting.

[96]  Tomi Roinila,et al.  CMOS MEMS-based thermoelectric generator with an efficient heat dissipation path , 2012 .