Complete solutions to a family of cubic Diophantine equations
暂无分享,去创建一个
[1] Emery Thomas,et al. Fundamental units for orders in certain cubic number fields. , 1979 .
[2] R. Steiner. On Mordell's equation y 2 - k = x 3 . A problem of Stolarsky , 1986 .
[3] H. Davenport,et al. THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .
[4] De Weger,et al. de Weger: On the practical solution of the Thue equation , 1989 .
[5] W. J. Ellison,et al. The diophantine equation y2 + k = x3 , 1972 .
[6] N. Tzanakis. The diophantine equation x3 − 3xy2 − y3 = 1 and related equations , 1984 .
[7] Wilhelm Ljunggren,et al. Einige Bemerkungen Über Die Darstellung Ganzer Zahlen Durch Binäre Kubische Formen Mit Positiver Diskriminante , 1942 .
[8] Attila Pethö. On the Resolution of Thue Inequalities , 1987, J. Symb. Comput..
[9] Maurice Mignotte,et al. Linear forms in two logarithms and Schneider's method , 1978 .
[10] A. Pethö. On the representation of 1 by binary cubic forms with positive discriminant , 1989 .
[11] D. Shanks. The simplest cubic fields , 1974 .
[12] S. Lang. Number Theory III , 1991 .