Construction of dual B-spline functions

Using new properties of dual functions, we show that the method of constructing the dual bases recently presented in [P. Wozny, Construction of dual bases, Journal of Computational and Applied Mathematics 245 (2013) 75-85] can be significantly simplified. Next, we propose a simple algorithm of constructing the dual B-spline functions, which can be useful in solving some approximation problems related to numerical analysis or computer graphics.

[1]  Liu Xiu-ping,et al.  A dual functional to the univariate B-spline , 2006 .

[2]  Pawel Wozny,et al.  Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials , 2010, J. Comput. Appl. Math..

[3]  Paweł Woźny,et al.  Connections between two-variable Bernstein and Jacobi polynomials on the triangle , 2006 .

[4]  Ligang Liu,et al.  Fast approach for computing roots of polynomials using cubic clipping , 2009, Comput. Aided Geom. Des..

[5]  Abedallah Rababah,et al.  Weighted dual functions for Bernstein basis satisfying boundary constraints , 2008, Appl. Math. Comput..

[6]  Bert Jüttler,et al.  Computing roots of polynomials by quadratic clipping , 2007, Comput. Aided Geom. Des..

[7]  Pawel Wozny Simple algorithms for computing the Bézier coefficients of the constrained dual Bernstein polynomials , 2012, Appl. Math. Comput..

[8]  Jieqing Tan,et al.  The dual bases for the Bézier-Said-Wang type generalized Ball polynomial bases and their applications , 2010, Appl. Math. Comput..

[9]  Pawel Wozny,et al.  Dual generalized Bernstein basis , 2006, J. Approx. Theory.

[10]  Pawel Wozny,et al.  Multi-degree reduction of tensor product Bézier surfaces with general boundary constraints , 2011, Appl. Math. Comput..

[11]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[12]  Z. Tsesel'skii,et al.  The B-spline basis in a space of algebraic polynomials , 1986 .

[13]  Hongyi Wu,et al.  Dual bases for Wang-Bézier basis and their applications , 2009, Appl. Math. Comput..

[14]  Pawel Wozny,et al.  Multi-degree reduction of Bézier curves with constraints, using dual Bernstein basis polynomials , 2009, Comput. Aided Geom. Des..

[15]  Hongyi Wu,et al.  The weighted dual functions for Wang-Bézier type generalized Ball bases and their applications , 2009, Appl. Math. Comput..

[16]  Abedallah Rababah,et al.  The weighted dual functionals for the univariate Bernstein basis , 2007, Appl. Math. Comput..

[17]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[18]  Hongyi Wu,et al.  Dual basis functions for the NS-power basis and their applications , 2009, Appl. Math. Comput..

[19]  Ron Goldman,et al.  Dual Polynomial Bases , 1994 .

[20]  Pawel Wozny,et al.  Polynomial approximation of rational Bézier curves with constraints , 2012, Numerical Algorithms.

[21]  Pawel Wozny,et al.  Bézier representation of the constrained dual Bernstein polynomials , 2011, Appl. Math. Comput..

[22]  Paweł Wony Construction of dual bases , 2013 .

[23]  Davood Bakhshesh,et al.  The Weighted Dual Functions for Wang-Said TypeGeneralized Ball Bases With and Without BoundaryConstraints , 2012 .

[24]  Bert Jüttler,et al.  The dual basis functions for the Bernstein polynomials , 1998, Adv. Comput. Math..