Molecular Epidemiology for Vector Research on Leishmaniasis

Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches.

[1]  J. D. Marco,et al.  Natural infection of Lutzomyia tortura with Leishmania (Viannia) naiffi in an Amazonian area of Ecuador. , 2008, The American journal of tropical medicine and hygiene.

[2]  E. Gomez,et al.  Molecular typing of sand fly species (Diptera, Psychodidae, Phlebotominae) from areas endemic for Leishmaniasis in Ecuador by PCR-RFLP of 18S ribosomal RNA gene. , 2008, The Journal of veterinary medical science.

[3]  R. Badaró,et al.  Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. , 1991, The American journal of tropical medicine and hygiene.

[4]  A. Elhassan,et al.  Leishmaniasis in Sudan. 2. Mucosal leishmaniasis , 2001 .

[5]  N. Peters,et al.  The impact of vector‐mediated neutrophil recruitment on cutaneous leishmaniasis , 2009, Cellular microbiology.

[6]  R. Ben-Ismail,et al.  Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major , 1997, Insect molecular biology.

[7]  森下 薫,et al.  Progress of medical parasitology in Japan , 1964 .

[8]  F. Ribeiro-Gomes,et al.  Macrophage Interactions with Neutrophils Regulate Leishmania major Infection1 , 2004, The Journal of Immunology.

[9]  J. D. Marco,et al.  The identification of sandfly species, from an area of Argentina with endemic leishmaniasis, by the PCR-based analysis of the gene coding for 18S ribosomal RNA , 2007, Annals of tropical medicine and parasitology.

[10]  J. Krzywinski,et al.  Molecular systematics of Anopheles: from subgenera to subpopulations. , 2003, Annual review of entomology.

[11]  M. Miles,et al.  First detection of Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of minicircle kinetoplast DNA. , 2005, Acta tropica.

[12]  D. Young,et al.  Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera:Psychodidae) , 1994 .

[13]  A. Peixoto,et al.  The period gene and genetic differentiation between three Brazilian populations of Lutzomyia longipalpis , 2002, Insect molecular biology.

[14]  J. Piñero,et al.  Natural infection of Lutzomyia neivai with Leishmania spp. in northwestern Argentina. , 2006, Acta tropica.

[15]  A. Jorquera,et al.  Multiplex-PCR for detection of natural Leishmania infection in Lutzomyia spp. captured in an endemic region for cutaneous leishmaniasis in state of Sucre, Venezuela. , 2005, Memorias do Instituto Oswaldo Cruz.

[16]  E. F. Rangel,et al.  First report of Lutzomyia (Nyssomyia) neivai (Diptera: Psychodidae: Phlebotominae) naturally infected by Leishmania (Viannia) braziliensis in a periurban area of south Brazil using a multiplex polymerase chain reaction assay. , 2009, The American journal of tropical medicine and hygiene.

[17]  L. Munstermann,et al.  Systematic relationships among Lutzomyia sand flies (Diptera: Psychodidae) of Peru and Colombia based on the analysis of 12S and 28S ribosomal DNA sequences. , 2004, International journal for parasitology.

[18]  A. Peixoto,et al.  Lutzomyia longipalpis in Brazil: a complex or a single species? A mini-review. , 2007, Memorias do Instituto Oswaldo Cruz.

[19]  S. Kamhawi Phlebotomine sand flies and Leishmania parasites: friends or foes? , 2006, Trends in parasitology.

[20]  P. Ready,et al.  Molecular identification of vectors of Leishmania in Colombia: mitochondrial introgression in the Lutzomyia townsendi series. , 2002, Acta tropica.

[21]  M. Fay,et al.  In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies , 2008, Science.

[22]  J. D. Marco,et al.  Molecular mass screening to incriminate sand fly vectors of Andean-type cutaneous leishmaniasis in Ecuador and Peru. , 2008, The American journal of tropical medicine and hygiene.

[23]  C. Barillas-Mury,et al.  A Role for Insect Galectins in Parasite Survival , 2004, Cell.

[24]  D. Torgerson,et al.  Genetic relationships among some species groups within the genus Lutzomyia (Diptera: Psychodidae). , 2003, The American journal of tropical medicine and hygiene.

[25]  P. Ready,et al.  Regional genetic differentiation of Phlebotomus sergenti in three Moroccan foci of cutaneous leishmaniasis caused by Leishmania tropica. , 2004, Parasite.

[26]  P. Ready,et al.  Isolation of non‐LTR retrotransposon reverse transcriptase‐like sequences from phlebotomine sandflies , 1994, Insect molecular biology.

[27]  P. Ready,et al.  Sandflies of the Phlebotomus perniciosus complex: mitochondrial introgression and a new sibling species of P. longicuspis in the Moroccan Rif , 2004, Medical and veterinary entomology.

[28]  K. Katakura,et al.  Detection and identification of Leishmania species within naturally infected sand flies in the andean areas of ecuador by a polymerase chain reaction. , 2005, The American journal of tropical medicine and hygiene.

[29]  S. Sawalha,et al.  Population structure and geographical subdivision of the Leishmania major vector Phlebotomus papatasi as revealed by microsatellite variation , 2009, Medical and veterinary entomology.

[30]  A. Gebert,et al.  Cutting Edge: Neutrophil Granulocyte Serves as a Vector for Leishmania Entry into Macrophages1 , 2004, The Journal of Immunology.

[31]  O. Kaneko,et al.  Molecular detection of Leishmania parasites from whole bodies of sandflies collected in Nepal , 2008, Parasitology Research.

[32]  P. Bates Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies , 2007, International journal for parasitology.

[33]  P. Ready,et al.  Evolution of multiple families of non-LTR retrotransposons in phlebotomine sandflies. , 1996, Genetical research.

[34]  W. Solbach,et al.  Neutrophil granulocytes--Trojan horses for Leishmania major and other intracellular microbes? , 2003, Trends in microbiology.

[35]  P. Desjeux Leishmaniasis: current situation and new perspectives. , 2004, Comparative immunology, microbiology and infectious diseases.

[36]  Y. Tselentis,et al.  Detection and Identification of Leishmania DNA within Naturally Infected Sand Flies by Seminested PCR on Minicircle Kinetoplastic DNA , 2000, Applied and Environmental Microbiology.

[37]  L. Osorio,et al.  Mucosal leishmaniasis due to Leishmania (Viannia) panamensis in Colombia: clinical characteristics. , 1998, The American journal of tropical medicine and hygiene.

[38]  M. Gramiccia,et al.  Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larroussius (Diptera, psychodidae) by ITS2 rDNA sequences. , 2000, Insect biochemistry and molecular biology.

[39]  D. Sacks,et al.  Leishmania–sand fly interactions controlling species‐specific vector competence , 2001, Cellular microbiology.

[40]  E. Galati,et al.  Detection and identification of Leishmania species in field-captured phlebotomine sandflies based on mini-exon gene PCR. , 2006, Acta tropica.

[41]  Y. Hashiguchi,et al.  A review of leishmaniasis in Ecuador. , 1991, Bulletin of the Pan American Health Organization.

[42]  R. Andreotti,et al.  Detection of Leishmania DNA in phlebotomines captured in Campo Grande, Mato Grosso do Sul, Brazil. , 2008, Experimental parasitology.

[43]  D. Campbell-Lendrum,et al.  Domesticity of Lutzomyia whitmani (Diptera: psychodidae) populations: field experiments indicate behavioural differences. , 2000, Bulletin of entomological research.

[44]  A. Peixoto,et al.  Genetic divergence between two sympatric species of the Lutzomyia longipalpis complex in the paralytic gene, a locus associated with insecticide resistance and lovesong production. , 2008, Memorias do Instituto Oswaldo Cruz.

[45]  T. Barrett,et al.  Isolation of Leishmania guyanensis from lesions of the nasal mucosa. , 1988, Memorias do Instituto Oswaldo Cruz.

[46]  A. Aransay,et al.  Population differentiation of Phlebotomus perniciosus in Spain following postglacial dispersal , 2003, Heredity.

[47]  P. Desjeux The increase in risk factors for leishmaniasis worldwide. , 2001, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[48]  C. Kyriacou,et al.  Genetic Divergence in the cacophony IVS6 Intron Among Five BrazilianPopulations of Lutzomyia longipalpis , 2004, Journal of Molecular Evolution.

[49]  J. D. Marco,et al.  Are cytochrome B gene sequencing and polymorphism-specific polymerase chain reaction as reliable as multilocus enzyme electrophoresis for identifying Leishmania spp. from Argentina? , 2006, American Journal of Tropical Medicine and Hygiene.

[50]  J. Shaw,et al.  DNA probes for distinguishing Psychodopygus wellcomei from Psychodopygus complexus (Diptera:Psychodidae). , 1991, Memorias do Instituto Oswaldo Cruz.

[51]  M. Rogers,et al.  New insights into the developmental biology and transmission mechanisms of Leishmania. , 2004, Current molecular medicine.

[52]  C. Porter,et al.  Speciation and population structure in the morphospecies Lutzomyia longipalpis (Lutz & Neiva) as derived from the mitochondrial ND4 gene. , 2001, Molecular phylogenetics and evolution.

[53]  Deborah F. Smith,et al.  DNA hybridizations on squash‐blotted sandflies to identify both Phlebotomus papatasi and infecting Leishmania major , 1988, Medical and veterinary entomology.

[54]  R. Tesh,et al.  A review of the geographic distribution and epidemiology of leishmaniasis in the New World. , 1989, The American journal of tropical medicine and hygiene.

[55]  E. Lerner,et al.  Leishmaniasis as an emerging infection. , 2001, The journal of investigative dermatology. Symposium proceedings.

[56]  M. Yaghoobi-Ershadi,et al.  First Detection of Leishmania infantum in Phlebotomus (Larroussius) major (Diptera: Psychodidae) from Iran , 2008, Journal of medical entomology.

[57]  C. Kyriacou,et al.  Molecular divergence in the period gene between two putative sympatric species of the Lutzomyia longipalpis complex. , 2002, Molecular biology and evolution.

[58]  Pierre Defourny,et al.  The Anopheles dirus complex: spatial distribution and environmental drivers , 2007, Malaria Journal.

[59]  P. Marsden Mucosal leishmaniasis ("espundia" Escomel, 1911). , 1986, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[60]  P. Volf,et al.  Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA Epidemiological consequences. , 2008, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[61]  K. Katakura,et al.  Multilocus enzyme electrophoresis and cytochrome B gene sequencing-based identification of Leishmania isolates from different foci of cutaneous leishmaniasis in Pakistan. , 2006, The American journal of tropical medicine and hygiene.

[62]  L. Floeter-Winter,et al.  The finding of Lutzomyia almerioi and Lutzomyia longipalpis naturally infected by Leishmania spp. in a cutaneous and canine visceral leishmaniases focus in Serra da Bodoquena, Brazil. , 2009, Veterinary parasitology.

[63]  A. James,et al.  Typing of sandflies from Greece and Cyprus by DNA polymorphism of 18S rRNA gene , 1999, Insect molecular biology.

[64]  R. Killick-Kendrick,et al.  The biology and control of phlebotomine sand flies. , 1999, Clinics in dermatology.

[65]  Y. Tselentis,et al.  Phylogenetic relationships of phlebotomine sandflies inferred from small subunit nuclear ribosomal DNA , 2000, Insect molecular biology.

[66]  E. Gomez,et al.  Genetic diversity of ribosomal RNA internal transcribed spacer sequences in Lutzomyia species from areas endemic for New World cutaneous leishmaniasis. , 2009, Acta tropica.

[67]  E. Gomez,et al.  Establishment of a mass screening method of sand fly vectors for Leishmania infection by molecular biological methods. , 2007, The American journal of tropical medicine and hygiene.

[68]  A. Peixoto,et al.  The Lutzomyia longipalpis species complex: does population sub-structure matter to Leishmania transmission? , 2008, Trends in parasitology.

[69]  S. Beverley,et al.  The role of phosphoglycans in Leishmania-sand fly interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Volf,et al.  ITS 2 sequences heterogeneity in Phlebotomus sergenti and Phlebotomus similis (Diptera, Psychodidae): possible consequences in their ability to transmit Leishmania tropica. , 2002, International journal for parasitology.

[71]  S. Boussaa,et al.  Intraspecific variability (rDNA ITS and mtDNA Cyt b) of Phlebotomus sergenti in Spain and Morocco. , 2008, Acta tropica.

[72]  R. Jochim,et al.  Leishmania commandeers the host inflammatory response through neutrophils. , 2009, Trends in parasitology.

[73]  K. Takei,et al.  Sequence variation of the Cytochrome b gene of various human infecting members of the genus Leishmania and their phylogeny , 2004, Parasitology.