Julius H. Comroe, Jr., distinguished lecture: central chemoreception: then ... and now.

The 2010 Julius H. Comroe, Jr., Lecture of the American Physiological Society focuses on evolving ideas in chemoreception for CO₂/pH in terms of what is "sensed," where it is sensed, and how the sensed information is used physiologically. Chemoreception is viewed as involving neurons (and glia) at many sites within the hindbrain, including, but not limited to, the retrotrapezoid nucleus, the medullary raphe, the locus ceruleus, the nucleus tractus solitarius, the lateral hypothalamus (orexin neurons), and the caudal ventrolateral medulla. Central chemoreception also has an important nonadditive interaction with afferent information arising at the carotid body. While ventilation has been viewed as the primary output variable, it appears that airway resistance, arousal, and blood pressure can also be significantly affected. Emphasis is placed on the importance of data derived from studies performed in the absence of anesthesia.

[1]  R. Putnam,et al.  The locus coeruleus and central chemosensitivity , 2010, Respiratory Physiology & Neurobiology.

[2]  E. Nattie,et al.  State-dependent central chemoreception: A role of orexin , 2010, Respiratory Physiology & Neurobiology.

[3]  W. Milsom The phylogeny of central chemoreception , 2010, Respiratory Physiology & Neurobiology.

[4]  J. Leiter,et al.  ATP, glia and central respiratory control , 2010, Respiratory Physiology & Neurobiology.

[5]  J. Dempsey,et al.  An interdependent model of central/peripheral chemoreception: Evidence and implications for ventilatory control , 2010, Respiratory Physiology & Neurobiology.

[6]  M. Carroll,et al.  Congenital central hypoventilation syndrome and the PHOX2B gene: A model of respiratory and autonomic dysregulation , 2010, Respiratory Physiology & Neurobiology.

[7]  Robert T. R. Huckstepp,et al.  Connexin hemichannel‐mediated CO2‐dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity , 2010, The Journal of physiology.

[8]  M. Thoby-Brisson,et al.  Phox2b, congenital central hypoventilation syndrome and the control of respiration. , 2010, Seminars in cell & developmental biology.

[9]  D. Bayliss,et al.  Central respiratory chemoreception , 2010, The Journal of comparative neurology.

[10]  Jeffrey C. Smith,et al.  Essential Role of Phox2b-Expressing Ventrolateral Brainstem Neurons in the Chemosensory Control of Inspiration and Expiration , 2010, The Journal of Neuroscience.

[11]  E. Nattie,et al.  Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle , 2010, The Journal of physiology.

[12]  K. Deisseroth,et al.  Astrocytes Control Breathing Through pH-Dependent Release of ATP , 2010, Science.

[13]  D. Bayliss,et al.  Anesthetic Activation of Central Respiratory Chemoreceptor Neurons Involves Inhibition of a THIK-1-Like Background K+ Current , 2010, The Journal of Neuroscience.

[14]  J. Dempsey,et al.  Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 , 2010, The Journal of physiology.

[15]  J. Leiter,et al.  Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. , 2010, Journal of applied physiology.

[16]  D. Mulkey,et al.  Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus. , 2010, Journal of applied physiology.

[17]  G. Richerson,et al.  The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. , 2010, Journal of applied physiology.

[18]  E. Nattie,et al.  High CO2/H+ dialysis in the caudal ventrolateral medulla (Loeschcke's area) increases ventilation in wakefulness , 2010, Respiratory Physiology & Neurobiology.

[19]  R. Stornetta,et al.  Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. , 2010, Journal of applied physiology.

[20]  E. Nattie,et al.  Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. , 2010, Journal of applied physiology.

[21]  E. Nattie,et al.  The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle , 2010, Respiratory Physiology & Neurobiology.

[22]  R. Putnam CO2 chemoreception in cardiorespiratory control. , 2010, Journal of applied physiology.

[23]  P. Pierson,et al.  Task2 potassium channels set central respiratory CO2 and O2 sensitivity , 2010, Proceedings of the National Academy of Sciences.

[24]  C A Smith,et al.  Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. , 2010, Journal of applied physiology.

[25]  M. Thoby-Brisson,et al.  Defective Respiratory Rhythmogenesis and Loss of Central Chemosensitivity in Phox2b Mutants Targeting Retrotrapezoid Nucleus Neurons , 2009, The Journal of Neuroscience.

[26]  R. Stornetta,et al.  Activation of the retrotrapezoid nucleus by posterior hypothalamic stimulation , 2009, The Journal of physiology.

[27]  D. Bayliss,et al.  Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity , 2009, Respiratory Physiology & Neurobiology.

[28]  E. Deneris,et al.  Medullary serotonin neurons and central CO2 chemoreception , 2009, Respiratory Physiology & Neurobiology.

[29]  G. Fortin,et al.  PHOX2B in respiratory control: Lessons from congenital central hypoventilation syndrome and its mouse models , 2009, Respiratory Physiology & Neurobiology.

[30]  Keiko Ikeda,et al.  Phox2b, RTN/pFRG neurons and respiratory rhythmogenesis , 2009, Respiratory Physiology & Neurobiology.

[31]  Jeffrey C. Smith,et al.  Transgenic Mice Lacking Serotonin Neurons Have Severe Apnea and High Mortality during Development , 2009, The Journal of Neuroscience.

[32]  G. Burnstock,et al.  Purinergic signalling in autonomic control , 2009, Trends in Neurosciences.

[33]  E. Nattie,et al.  Antagonism of orexin receptor‐1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness , 2009, The Journal of physiology.

[34]  E. Nattie,et al.  Central chemoreception is a complex system function that involves multiple brain stem sites. , 2009, Journal of applied physiology.

[35]  L. Branco,et al.  Brain monoaminergic neurons and ventilatory control in vertebrates , 2008, Respiratory Physiology & Neurobiology.

[36]  Sheree M. Johnson,et al.  GFP-expressing locus ceruleus neurons from Prp57 transgenic mice exhibit CO2/H+ responses in primary cell culture. , 2008, Journal of applied physiology.

[37]  P. Guyenet,et al.  The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. , 2008, Journal of applied physiology.

[38]  W. Dunin-Barkowski,et al.  Effect of hypercapnia on sleep and breathing in unanesthetized cats. , 2008, Sleep.

[39]  R. Stornetta,et al.  Selective lesion of retrotrapezoid Phox2b‐expressing neurons raises the apnoeic threshold in rats , 2008, The Journal of physiology.

[40]  T. Bradley,et al.  Update in sleep and control of ventilation 2007. , 2008, American journal of respiratory and critical care medicine.

[41]  E. Nattie,et al.  Focal CO2 dialysis in raphe obscurus does not stimulate ventilation but enhances the response to focal CO2 dialysis in the retrotrapezoid nucleus. , 2008, Journal of applied physiology.

[42]  D. Bayliss,et al.  Retrotrapezoid nucleus and central chemoreception , 2008, The Journal of physiology.

[43]  E. Deneris,et al.  Redefining the serotonergic system by genetic lineage , 2008, Nature Neuroscience.

[44]  Glenn J Tattersall,et al.  Defects in Breathing and Thermoregulation in Mice with Near-Complete Absence of Central Serotonin Neurons , 2008, The Journal of Neuroscience.

[45]  L. Gargaglioni,et al.  Locus coeruleus noradrenergic neurons and CO2 drive to breathing , 2008, Pflügers Archiv - European Journal of Physiology.

[46]  Lars Fugger,et al.  Control of hypothalamic orexin neurons by acid and CO2 , 2007, Proceedings of the National Academy of Sciences.

[47]  T. Bradley,et al.  Update in sleep and control of ventilation 2006. , 2007, American journal of respiratory and critical care medicine.

[48]  E. Nattie,et al.  Neurokinin-1 receptor-expressing neurons in the ventral medulla are essential for normal central and peripheral chemoreception in the conscious rat. , 2006, Journal of applied physiology.

[49]  E. Nattie,et al.  Simultaneous inhibition of caudal medullary raphe and retrotrapezoid nucleus decreases breathing and the CO2 response in conscious rats , 2006, The Journal of physiology.

[50]  Y. Fukuda,et al.  Multiple components of the defense response depend on orexin: Evidence from orexin knockout mice and orexin neuron-ablated mice , 2006, Autonomic Neuroscience.

[51]  R. Stornetta,et al.  Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2‐sensitive neurons in rats , 2006, The Journal of physiology.

[52]  M. Haxhiu,et al.  CNS determinants of sleep-related worsening of airway functions: Implications for nocturnal asthma , 2006, Respiratory Physiology & Neurobiology.

[53]  E. Nattie,et al.  Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability , 2006, The Journal of physiology.

[54]  A. Gourine On the peripheral and central chemoreception and control of breathing: an emerging role of ATP , 2005, The Journal of physiology.

[55]  Alexander V. Gourine,et al.  ATP is a mediator of chemosensory transduction in the central nervous system , 2005, Nature.

[56]  E. Nattie,et al.  Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats , 2005, The Journal of physiology.

[57]  G. Richerson,et al.  Homing in on the specific phenotype(s) of central respiratory chemoreceptors. , 2005, Experimental physiology.

[58]  H. Forster,et al.  Effects on breathing of focal acidosis at multiple medullary raphe sites in awake goats. , 2004, Journal of applied physiology.

[59]  Michel Simonneau,et al.  Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents , 2004, Respiratory Physiology & Neurobiology.

[60]  G. Richerson,et al.  Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis , 2004, Nature Reviews Neuroscience.

[61]  E. Nattie,et al.  Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets. , 2004, Journal of applied physiology.

[62]  G. Richerson,et al.  Medullary serotonergic neurones and adjacent neurones that express neurokinin‐1 receptors are both involved in chemoreception in vivo , 2004, The Journal of physiology.

[63]  J. Viemari,et al.  Phox2a Gene, A6 Neurons, and Noradrenaline Are Essential for Development of Normal Respiratory Rhythm in Mice , 2004, The Journal of Neuroscience.

[64]  J. Gallego,et al.  Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways , 2003, Development.

[65]  J. Leiter,et al.  Ontogeny of central CO2 chemoreception: chemosensitivity in the ventral medulla of developing bullfrogs. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[66]  I. Solomon Focal CO2/H+ alters phrenic motor output response to chemical stimulation of cat pre-Botzinger complex in vivo. , 2003, Journal of applied physiology.

[67]  B. Yamamoto,et al.  Catecholaminergic microcircuitry controlling the output of airway-related vagal preganglionic neurons. , 2003, Journal of applied physiology.

[68]  J. Dempsey,et al.  Measurement of the CO2 apneic threshold. , 2003, American journal of respiratory and critical care medicine.

[69]  H. Forster Plasticity in the control of breathing following sensory denervation. , 2003, Journal of applied physiology.

[70]  E. Nattie,et al.  CO2 dialysis in one chemoreceptor site, the RTN: stimulus intensity and sensitivity in the awake rat , 2002, Respiratory Physiology & Neurobiology.

[71]  E. Nattie,et al.  CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. , 2002, Journal of applied physiology.

[72]  P. Nolan,et al.  Selected Contribution: Effects of sleep-wake state on the genioglossus vs. diaphragm muscle responses to CO2 in rats , 2002 .

[73]  J. Erlichman,et al.  Ventilatory effects of impaired glial function in a brain stem chemoreceptor region in the conscious rat. , 2001, Journal of applied physiology.

[74]  E. Nattie,et al.  CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. , 2001, Journal of applied physiology.

[75]  P. Pasquis,et al.  Upper airway resistance during progressive hypercapnia and progressive hypoxia in normal awake subjects. , 2000, Respiration physiology.

[76]  N. Ayas,et al.  Hypercapnia can induce arousal from sleep in the absence of altered respiratory mechanoreception. , 2000, American journal of respiratory and critical care medicine.

[77]  E. Nattie,et al.  Muscimol dialysis in the retrotrapezoid nucleus region inhibits breathing in the awake rat. , 2000, Journal of applied physiology.

[78]  E. Nattie,et al.  CO2, brainstem chemoreceptors and breathing , 1999, Progress in Neurobiology.

[79]  E. Nattie,et al.  CO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. , 1999, Journal of applied physiology.

[80]  J. Erlichman,et al.  Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. , 1998, Journal of applied physiology.

[81]  J. Severinghaus,et al.  Hans Loeschcke, Robert Mitchell and the medullary CO2 chemoreceptors: a brief historical review. , 1998, Respiration physiology.

[82]  H. Ahmed,et al.  Optimized process for the fabrication of mesoscopic magnetic structures , 1997 .

[83]  E. Nattie,et al.  Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. , 1997, Journal of applied physiology.

[84]  D. Ballantyne,et al.  Chemosensitive medullary neurones in the brainstem‐‐spinal cord preparation of the neonatal rat. , 1996, The Journal of physiology.

[85]  B. Jacobs,et al.  Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  J. Leiter,et al.  Central chemoreceptor stimulus in the terrestrial, pulmonate snail, Helix aspersa. , 1994, Respiration physiology.

[87]  E. Nattie,et al.  Widespread sites of brain stem ventilatory chemoreceptors. , 1993, Journal of applied physiology.

[88]  E. Nattie,et al.  Acetazolamide on the ventral medulla of the cat increases phrenic output and delays the ventilatory response to CO2. , 1991, The Journal of physiology.

[89]  J C Smith,et al.  Brainstem projections to the major respiratory neuron populations in the medulla of the cat , 1989, The Journal of comparative neurology.

[90]  J. Mills,et al.  Kainic acid on the rostral ventrolateral medulla inhibits phrenic output and CO2 sensitivity. , 1988, Journal of applied physiology.

[91]  H. Loeschcke Central chemosensitivity and the reaction theory. , 1982, The Journal of physiology.

[92]  M. Elam,et al.  Hypercapnia and hypoxia: Chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves , 1981, Brain Research.

[93]  H. Loeschcke,et al.  Ventilatory response to alterations of H+ ion concentration in small areas of the ventral medullary surface. , 1970, Respiration physiology.

[94]  W. O. Friesen,et al.  Hypoxic ventilatory drive in normal man. , 1970, The Journal of clinical investigation.

[95]  J. Pappenheimer,et al.  ROLE OF CEREBRAL FLUIDS IN CONTROL OF RESPIRATION AS STUDIED IN UNANESTHETIZED GOATS. , 1965, The American journal of physiology.

[96]  J. Severinghaus,et al.  Respiratory responses mediated through superficial chemosensitive areas on the medulla , 1963, Journal of applied physiology.

[97]  I. Leusen,et al.  Acid-base equilibrium between blood and cerebrospinal fluid. , 1954, The Journal of physiology.

[98]  Leusen Ir Chemosensitivity of the respiratory center; influence of CO2 in the cerebral ventricles on respiration. , 1953 .

[99]  H. Forster,et al.  Focal acidosis in the pre-Botzinger complex area of awake goats induces a mild tachypnea. , 2009, Journal of applied physiology.

[100]  H. Forster,et al.  The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing. , 2008, Advances in experimental medicine and biology.

[101]  E. R. Sutherland,et al.  Targeting the Distal Lung in Asthma , 2005 .

[102]  D. Millhorn,et al.  CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii , 2004, Experimental Brain Research.

[103]  Kety Ss,et al.  Julius H. Comroe, Jr.: March 13, 1911-July 31, 1984. , 2001, Biographical memoirs. National Academy of Sciences.