Distance and angular holonomic constraints in molecular simulations.

Finding the energy minima of systems with constraints is a challenging problem. We develop a minimization method based on the projection operator technique to enforce distance and angle constraints in minimization and reaction-path dynamics. The application of the projection operator alone does not maintain the constraints, i.e., they are slightly violated. Therefore, we use the SHAKE-methodology to enforce the constraints after each minimization step. We have extended theta -SHAKE for bend angles and introduce phi-SHAKE and chi-SHAKE to constrain dihedral and out-of-plane angles, respectively. Two case studies are presented: (1) A mode analysis of united-atom n-butane with various internal degrees of freedom kept frozen and (2) the minimization of chromene at a fixed approach toward the catalytic site of a (salen)Mn. The obtained information on energetics can be used to explain why specific enantioselectivity is observed. Previous minimization methods work for the free molecular case, but fail when molecules are tightly confined.

[1]  L. Broadbelt,et al.  Hybrid Quantum Mechanics/Molecular Mechanics Investigation of (salen)Mn for use in Metal−Organic Frameworks , 2010 .

[2]  C. P. Lowe,et al.  MILCH SHAKE: An efficient method for constraint dynamics applied to alkanes , 2009, J. Comput. Chem..

[3]  Rajamani Krishna,et al.  Method for Analyzing Structural Changes of Flexible Metal-Organic Frameworks Induced by Adsorbates , 2009 .

[4]  Jhih-Wei Chu,et al.  Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials. , 2009, Journal of chemical theory and computation.

[5]  Andreas M. Köster,et al.  The Importance of Step Control in Optimization Methods , 2009 .

[6]  David J Wales,et al.  Simulations of rigid bodies in an angle-axis framework. , 2009, Physical chemistry chemical physics : PCCP.

[7]  Petros Koumoutsakos,et al.  theta-SHAKE: An extension to SHAKE for the explicit treatment of angular constraints , 2009, Comput. Phys. Commun..

[8]  C. P. Lowe,et al.  Efficient constraint dynamics using MILC SHAKE , 2008, J. Comput. Phys..

[9]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[10]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[11]  Peter H. M. Budzelaar,et al.  Geometry optimization using generalized, chemically meaningful constraints , 2007, J. Comput. Chem..

[12]  Martin J. Field,et al.  A Practical Introduction to the Simulation of Molecular Systems: Subject index , 2007 .

[13]  Holonomic constraints: an analytical result , 2007, cond-mat/0701221.

[14]  T. P. Straatsma,et al.  Molecular Dynamics with General Holonomic Constraints and Application to Internal Coordinate Constraints , 2007 .

[15]  N. Mills ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; Academic Price: $710 for download, $800 for CD-ROM. , 2006 .

[16]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[17]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[18]  Samuel Krimm,et al.  WIGGLE: A new constrained molecular dynamics algorithm in Cartesian coordinates , 2005 .

[19]  Jürgen Hafner,et al.  Geometry optimization of periodic systems using internal coordinates. , 2005, The Journal of chemical physics.

[20]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[21]  S. Nguyen,et al.  Prospects for nanoporous metal-organic materials in advanced separations processes , 2004 .

[22]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[23]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[24]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[25]  Berend Smit,et al.  Accelerating Monte Carlo Sampling , 2002 .

[26]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[27]  Makoto Yoneya,et al.  A generalized non-iterative matrix method for constraint molecular dynamics simulations , 2001 .

[28]  P. Hünenberger,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001, J. Comput. Chem..

[29]  G. Fitzgerald,et al.  Geometry optimization of solids using delocalized internal coordinates , 2001 .

[30]  L. Cavallo,et al.  A possible mechanism for enantioselectivity in the chiral epoxidation of olefins with. , 2001, Chemistry.

[31]  Molecular dynamics of polymers with explicit but frozen hydrogens , 2001 .

[32]  Gustavo E. Scuseria,et al.  A redundant internal coordinate algorithm for optimization of periodic systems , 2001 .

[33]  Russ B. Altman,et al.  Constrained Global Optimization for Estimating Molecular Structure from Atomic Distances , 2001, J. Comput. Biol..

[34]  D. W. Noid,et al.  Computation of internal coordinates, derivatives, and gradient expressions: torsion and improper torsion , 2000, J. Comput. Chem..

[35]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[36]  Kim Palmo,et al.  New out‐of‐plane angle and bond angle internal coordinates and related potential energy functions for molecular mechanics and dynamics simulations , 1999 .

[37]  R. Kutteh New approaches for molecular dynamics simulations with nonholonomic constraints , 1999 .

[38]  Juan J. de Pablo,et al.  ON THE SIMULATION OF VAPOR-LIQUID EQUILIBRIA FOR ALKANES , 1998 .

[39]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[40]  Peter Pulay,et al.  Ab initio geometry optimization for large molecules , 1997, J. Comput. Chem..

[41]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[42]  JON BAKER,et al.  Constrained optimization in delocalized internal coordinates , 1997, J. Comput. Chem..

[43]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[44]  Peter T. Cummings,et al.  Non-Iterative Constraint Dynamics Using Velocity-Explicit Verlet Methods , 1996 .

[45]  Arnaud Blondel,et al.  New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: Elimination of singularities , 1996, J. Comput. Chem..

[46]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[47]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[48]  Dusanka Janezic,et al.  Harmonic analysis of large systems. I. Methodology , 1995, J. Comput. Chem..

[49]  Peter A. Kollman,et al.  Gradient SHAKE: An improved method for constrained energy minimization in macromolecular simulations , 1995 .

[50]  H. Bekker,et al.  Force and virial of torsional‐angle‐dependent potentials , 1995, J. Comput. Chem..

[51]  B. Leimkuhler,et al.  Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .

[52]  Jon Baker,et al.  Constrained optimization in cartesian coordinates , 1993, J. Comput. Chem..

[53]  Jon Baker,et al.  Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates , 1993, J. Comput. Chem..

[54]  Donald G. Truhlar,et al.  Bond-distance and bond-angle constraints in reaction-path dynamics calculations , 1993 .

[55]  B. Palmer Direct application of SHAKE to the velocity Verlet algorithm , 1993 .

[56]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[57]  W. C. Swope,et al.  Alternative expressions for energies and forces due to angle bending and torsional energy , 1992 .

[58]  Jon Baker,et al.  Geometry optimization in Cartesian coordinates: Constrained optimization , 1992 .

[59]  A. Hopfinger,et al.  Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field , 1991 .

[60]  Jon Baker,et al.  Geometry optimization in cartesian coordinates: The end of the Z‐matrix? , 1991 .

[61]  Donald G. Truhlar,et al.  Projection operator method for geometry optimization with constraints , 1991 .

[62]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[63]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[64]  J. Baker An algorithm for the location of transition states , 1986 .

[65]  J. Ryckaert Special geometrical constraints in the molecular dynamics of chain molecules , 1985 .

[66]  J. Simons,et al.  Imposition of geometrical constraints on potential energy surface walking procedures , 1985 .

[67]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[68]  P. Jørgensen,et al.  Walking on potential energy surfaces , 1983 .

[69]  P. Pulay Improved SCF convergence acceleration , 1982 .

[70]  W. Miller,et al.  ON FINDING TRANSITION STATES , 1981 .

[71]  J. W. Humberston Classical mechanics , 1980, Nature.

[72]  I. Williams,et al.  Torsional internal coordinates in normal coordinate calculations , 1977 .

[73]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[74]  T. Miyazawa,et al.  A General Matrix Method for Treating Elastic Constants of Molecular Crystals; Application to Orthorhombic Polyethylene , 1971 .