Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains

Abstract We present, to the best of our knowledge, the first complete three-dimensional numerical solutions to a broad range of boundary value problems for a general theory of finite strain gradient elasticity. We have chosen for our work, Toupin’s theory (Toupin, 1962)–one of the more general formulations of strain gradient elasticity. Our framework has three crucial ingredients: The first is isogeometric analysis (Hughes et al., 2005), which we have adopted for its straightforward and robust representation of C 1 -continuity. The second is a weak treatment of the higher-order Dirichlet boundary conditions in the formulation, which control the development of strain gradients in the solution. The third ingredient is algorithmic (automatic) differentiation, which eliminates the need for linearization “by hand” of the rather complicated geometric and material nonlinearities in gradient elasticity at finite strains. We present a number of numerical solutions to demonstrate that the framework is applicable to arbitrary boundary value problems in three dimensions. We discuss length scale effects, the role of higher-order boundary conditions, and perhaps most importantly, the relevance of the framework to problems with elastic free energy density functions that are non-convex in strain space.

[1]  E. Sternberg,et al.  The effect of couple-stresses on the stress concentration around a crack☆ , 1967 .

[2]  Garth N. Wells,et al.  Phase field model for coupled displacive and diffusive microstructural processes under thermal loading , 2010, 1010.1871.

[3]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[4]  J. Ball,et al.  Local minimizers and planar interfaces in a phase-transition model with interfacial energy , 2011 .

[5]  Thomas J. R. Hughes,et al.  A variational multiscale approach to strain localization – formulation for multidimensional problems , 2000 .

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[8]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  R. Toupin Elastic materials with couple-stresses , 1962 .

[11]  A. Eringen Polar and nonlocal field theories , 1976 .

[12]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[13]  P. Fischer,et al.  𝒞1 continuous discretization of gradient elasticity , 2009 .

[14]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[15]  Nicolas Triantafyllidis,et al.  A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .

[16]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[17]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[18]  Morton E. Gurtin,et al.  A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations , 2005 .

[19]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[22]  A gradient approach to localization of deformation 227 materials , 2004 .

[23]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[24]  Paul Steinmann,et al.  Isogeometric analysis of 2D gradient elasticity , 2011 .

[25]  S. Allen,et al.  Ground state structures in ordered B.C.C. ternary alloys with second-neighbor interactions , 1992 .

[26]  E. B. Marin,et al.  A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects , 2002 .

[27]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[28]  M. Lazar,et al.  Dislocations in second strain gradient elasticity , 2006 .

[29]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[30]  K. Garikipati,et al.  A discontinuous Galerkin formulation for a strain gradient-dependent damage model , 2004 .

[31]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[32]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[33]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[34]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[35]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[36]  Zhiliang Zhang,et al.  A three-dimensional finite element for gradient elasticity based on a mixed-type formulation , 2012 .

[37]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[38]  Krishna Garikipati,et al.  Variational multiscale methods to embed the macromechanical continuum formulation with fine‐scale strain gradient theories , 2003 .

[39]  K. Garikipati Couple stresses in crystalline solids: origins from plastic slip gradients, dislocation core distortions, and three-body interatomic potentials , 2003 .

[40]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[41]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[42]  E. Aifantis,et al.  On Some Aspects in the Special Theory of Gradient Elasticity , 1997 .

[43]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[44]  J. Krumhansl,et al.  Twin Boundaries in Ferroelastic Media without Interface Dislocations , 1984 .

[45]  I. Vardoulakis,et al.  A three‐dimensional C1 finite element for gradient elasticity , 2009 .

[46]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[47]  P. Sharmaa,et al.  A novel atomistic approach to determine strain-gradient elasticity constants : Tabulation and comparison for various metals , semiconductors , silica , polymers and the ( Ir ) relevance for nanotechnologies , 2007 .

[48]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[49]  Jakob T. Ostien,et al.  A Discontinuous Galerkin Method for an Incompatibility-Based Strain Gradient Plasticity Theory , 2008 .

[50]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[51]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[52]  Roger P. Pawlowski,et al.  Efficient Expression Templates for Operator Overloading-based Automatic Differentiation , 2012, ArXiv.

[53]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[54]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[55]  Krishna Garikipati,et al.  A discontinuous Galerkin method for strain gradient-dependent damage: Study of interpolations and convergence , 2006 .

[56]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.