Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains
暂无分享,去创建一个
Krishna Garikipati | Shiva Rudraraju | Anton van der Ven | Anton Van der Ven | K. Garikipati | S. Rudraraju
[1] E. Sternberg,et al. The effect of couple-stresses on the stress concentration around a crack☆ , 1967 .
[2] Garth N. Wells,et al. Phase field model for coupled displacive and diffusive microstructural processes under thermal loading , 2010, 1010.1871.
[3] Morton E. Gurtin,et al. On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .
[4] J. Ball,et al. Local minimizers and planar interfaces in a phase-transition model with interfacial energy , 2011 .
[5] Thomas J. R. Hughes,et al. A variational multiscale approach to strain localization – formulation for multidimensional problems , 2000 .
[6] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[7] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[8] 고성현,et al. Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .
[9] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[10] R. Toupin. Elastic materials with couple-stresses , 1962 .
[11] A. Eringen. Polar and nonlocal field theories , 1976 .
[12] C. Truesdell,et al. The Non-Linear Field Theories Of Mechanics , 1992 .
[13] P. Fischer,et al. 𝒞1 continuous discretization of gradient elasticity , 2009 .
[14] Les A. Piegl,et al. The NURBS book (2nd ed.) , 1997 .
[15] Nicolas Triantafyllidis,et al. A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .
[16] Thomas J. R. Hughes,et al. Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .
[17] R. D. Mindlin. Second gradient of strain and surface-tension in linear elasticity , 1965 .
[18] Morton E. Gurtin,et al. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations , 2005 .
[19] E. Aifantis. On the role of gradients in the localization of deformation and fracture , 1992 .
[20] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[21] T. Hughes,et al. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .
[22] A gradient approach to localization of deformation 227 materials , 2004 .
[23] J. Ball,et al. Fine phase mixtures as minimizers of energy , 1987 .
[24] Paul Steinmann,et al. Isogeometric analysis of 2D gradient elasticity , 2011 .
[25] S. Allen,et al. Ground state structures in ordered B.C.C. ternary alloys with second-neighbor interactions , 1992 .
[26] E. B. Marin,et al. A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects , 2002 .
[27] Hans Muhlhaus,et al. A variational principle for gradient plasticity , 1991 .
[28] M. Lazar,et al. Dislocations in second strain gradient elasticity , 2006 .
[29] Huajian Gao,et al. Mechanism-based strain gradient plasticity— I. Theory , 1999 .
[30] K. Garikipati,et al. A discontinuous Galerkin formulation for a strain gradient-dependent damage model , 2004 .
[31] S. Müller. Variational models for microstructure and phase transitions , 1999 .
[32] R. D. James,et al. Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[33] Amit Acharya,et al. Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .
[34] Lisandro Dalcin,et al. PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.
[35] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[36] Zhiliang Zhang,et al. A three-dimensional finite element for gradient elasticity based on a mixed-type formulation , 2012 .
[37] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[38] Krishna Garikipati,et al. Variational multiscale methods to embed the macromechanical continuum formulation with fine‐scale strain gradient theories , 2003 .
[39] K. Garikipati. Couple stresses in crystalline solids: origins from plastic slip gradients, dislocation core distortions, and three-body interatomic potentials , 2003 .
[40] René de Borst,et al. Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .
[41] N. Fleck,et al. Strain gradient plasticity , 1997 .
[42] E. Aifantis,et al. On Some Aspects in the Special Theory of Gradient Elasticity , 1997 .
[43] R. D. Mindlin. Micro-structure in linear elasticity , 1964 .
[44] J. Krumhansl,et al. Twin Boundaries in Ferroelastic Media without Interface Dislocations , 1984 .
[45] I. Vardoulakis,et al. A three‐dimensional C1 finite element for gradient elasticity , 2009 .
[46] W. T. Koiter. Couple-stresses in the theory of elasticity , 1963 .
[47] P. Sharmaa,et al. A novel atomistic approach to determine strain-gradient elasticity constants : Tabulation and comparison for various metals , semiconductors , silica , polymers and the ( Ir ) relevance for nanotechnologies , 2007 .
[48] J. Waals. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .
[49] Jakob T. Ostien,et al. A Discontinuous Galerkin Method for an Incompatibility-Based Strain Gradient Plasticity Theory , 2008 .
[50] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[51] R. Toupin,et al. Theories of elasticity with couple-stress , 1964 .
[52] Roger P. Pawlowski,et al. Efficient Expression Templates for Operator Overloading-based Automatic Differentiation , 2012, ArXiv.
[53] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[54] E. Cosserat,et al. Théorie des Corps déformables , 1909, Nature.
[55] Krishna Garikipati,et al. A discontinuous Galerkin method for strain gradient-dependent damage: Study of interpolations and convergence , 2006 .
[56] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.