A High-Resolution Method for Quantitative Molecular Analysis of Functionally Characterized Individual Synapses

[1]  Z. Nusser Creating diverse synapses from the same molecules , 2018, Current Opinion in Neurobiology.

[2]  Z. Nusser,et al.  Target Cell Type-Dependent Differences in Ca2+ Channel Function Underlie Distinct Release Probabilities at Hippocampal Glutamatergic Terminals , 2017, The Journal of Neuroscience.

[3]  Kristina D. Micheva,et al.  Array tomography of physiologically-characterized CNS synapses , 2016, Journal of Neuroscience Methods.

[4]  Yuchio Yanagawa,et al.  Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.

[5]  Kristina D Micheva,et al.  Mapping Synapses by Conjugate Light-Electron Array Tomography , 2015, The Journal of Neuroscience.

[6]  Martin T. Wiechert,et al.  Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons , 2015, Nature Neuroscience.

[7]  A. Marty,et al.  Vesicular Release Statistics and Unitary Postsynaptic Current at Single GABAergic Synapses , 2015, Neuron.

[8]  Tobias Bonhoeffer,et al.  Balance and Stability of Synaptic Structures during Synaptic Plasticity , 2014, Neuron.

[9]  Anthony Holtmaat,et al.  The Relationship between PSD-95 Clustering and Spine Stability In Vivo , 2014, The Journal of Neuroscience.

[10]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[11]  Anirvan Ghosh,et al.  Elfn1 Regulates Target-Specific Release Probability at CA1-Interneuron Synapses , 2012, Science.

[12]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[13]  Masahiko Watanabe,et al.  Release probability of hippocampal glutamatergic terminals scales with the size of the active zone , 2012, Nature Neuroscience.

[14]  Stephen J. Smith,et al.  Deep molecular diversity of mammalian synapses: why it matters and how to measure it , 2012, Nature Reviews Neuroscience.

[15]  K. Micheva,et al.  The gain in brain: novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure , 2012, Current Opinion in Neurobiology.

[16]  Kristina D. Micheva,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[17]  Zoltan Nusser,et al.  Cell-Type-Dependent Molecular Composition of the Axon Initial Segment , 2008, The Journal of Neuroscience.

[18]  Zoltan Nusser,et al.  Specificity of Immunoreactions: The Importance of Testing Specificity in Each Method , 2008, The Journal of Neuroscience.

[19]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[20]  R. Shigemoto,et al.  High-resolution quantitative visualization of glutamate and GABA receptors at central synapses , 2007, Current Opinion in Neurobiology.

[21]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[22]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[23]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[24]  Z. Nusser,et al.  Quantal Size Is Independent of the Release Probability at Hippocampal Excitatory Synapses , 2005, The Journal of Neuroscience.

[25]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[26]  R. Angus Silver,et al.  Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations , 2003, Journal of Neuroscience Methods.

[27]  H. Atwood,et al.  Diversification of synaptic strength: presynaptic elements , 2002, Nature Reviews Neuroscience.

[28]  Attila Losonczy,et al.  Cell type dependence and variability in the short‐term plasticity of EPSCs in identified mouse hippocampal interneurones , 2002, The Journal of physiology.

[29]  M A Xu-Friedman,et al.  Three-Dimensional Comparison of Ultrastructural Characteristics at Depressing and Facilitating Synapses onto Cerebellar Purkinje Cells , 2001, The Journal of Neuroscience.

[30]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[31]  Z. Nusser A new approach to estimate the number, density and variability of receptors at central synapses , 1999, The European journal of neuroscience.

[32]  P. Agre,et al.  Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[34]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[35]  Masahiko Watanabe,et al.  Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre‐recipient layer) of the mouse hippocampal CA3 subfield , 1998, The European journal of neuroscience.

[36]  A. Wenzel,et al.  Synapse‐specific localization of NMDA and GABAA receptor subunits revealed by antigen‐retrieval immunohistochemistry , 1998, The Journal of comparative neurology.

[37]  O. Ottersen,et al.  Organization of Glutamate Receptors at the Synapse , 1997, The European journal of neuroscience.

[38]  R. Wenthold,et al.  Glutamate Receptors Are Selectively Targeted to Postsynaptic Sites in Neurons , 1997, Neuron.

[39]  K. Fujimoto,et al.  Transmembrane phospholipid distribution revealed by freeze-fracture replica labeling. , 1996, Journal of cell science.

[40]  O. Ottersen,et al.  Organization of AMPA Receptor Subunits at a Glutamate Synapse: A Quantitative Immunogold Analysis of Hair Cell Synapses in the Rat Organ of Corti , 1996, The Journal of Neuroscience.

[41]  P. Somogyi,et al.  Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone , 1996, Nature.

[42]  P. Somogyi,et al.  Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  R. Weinberg,et al.  An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. , 1995, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[44]  P. Somogyi,et al.  Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[45]  J. Gall,et al.  Formation and detection of RNA-DNA hybrid molecules in cytological preparations. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[46]  B. Lane,et al.  DIFFERENTIAL STAINING OF ULTRATHN SECTIONS OF EPON-EMBEDDED TISSUES FOR LIGHT MICROSCOPY , 1965, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[47]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[48]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[49]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.