A quantitative model of conserved macroscopic dynamics predicts future motor commands

In simple organisms such as Caenorhabditis elegans, whole brain imaging has been performed. Here, we use such recordings to model the nervous system. Our model uses neuronal activity to predict expected time of future motor commands up to 30 s prior to the event. These motor commands control locomotion. Predictions are valid for individuals not used in model construction. The model predicts dwell time statistics, sequences of motor commands and individual neuron activation. To develop this model, we extracted loops spanned by neuronal activity in phase space using novel methodology. The model uses only two variables: the identity of the loop and the phase along it. Current values of these macroscopic variables predict future neuronal activity. Remarkably, our model based on macroscopic variables succeeds despite consistent inter-individual differences in neuronal activation. Thus, our analytical framework reconciles consistent individual differences in neuronal activation with macroscopic dynamics that operate universally across individuals.

[1]  A. Clark Being There: Putting Brain, Body, and World Together Again , 1996 .

[2]  Alex Proekt,et al.  Universality of macroscopic neuronal dynamics in Caenorhabditis elegans , 2017 .

[3]  D. Raizen,et al.  Cellular Stress Induces a Protective Sleep-like State in C. elegans , 2014, Current Biology.

[4]  E. Boyden,et al.  Simultaneous whole-animal 3D-imaging of neuronal activity using light-field microscopy , 2014, Nature Methods.

[5]  Michael Lässig,et al.  Biological evolution and statistical physics , 2002 .

[6]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[7]  Randall D. Beer,et al.  Evolution and Analysis of Model CPGs for Walking: II. General Principles and Individual Variability , 1999, Journal of Computational Neuroscience.

[8]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[9]  R. Beer Dynamical approaches to cognitive science , 2000, Trends in Cognitive Sciences.

[10]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[12]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[13]  Matthew T. Kaufman,et al.  Neural population dynamics during reaching , 2012, Nature.

[14]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[15]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[16]  Aravinthan D. T. Samuel,et al.  Neuroendocrine modulation sustains the C. elegans forward motor state , 2016, bioRxiv.

[17]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[18]  E. Marder Neuromodulation of Neuronal Circuits: Back to the Future , 2012, Neuron.

[19]  Eli Shlizerman,et al.  Low-dimensional functionality of complex network dynamics: neurosensory integration in the Caenorhabditis Elegans connectome. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Randall D. Beer,et al.  Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical Models of C. elegans Klinotaxis , 2013, PLoS Comput. Biol..

[21]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Mason Klein,et al.  Pan-neuronal imaging in roaming Caenorhabditis elegans , 2015, Proceedings of the National Academy of Sciences.

[23]  Erik Laminski,et al.  Topological Causality in Dynamical Systems. , 2016, Physical review letters.

[24]  Jin Wang,et al.  Nonequilibrium landscape theory of neural networks , 2013, Proceedings of the National Academy of Sciences.

[25]  Randall D. Beer,et al.  Evolution and Analysis of Model CPGs for Walking: I. Dynamical Modules , 1999, Journal of Computational Neuroscience.

[26]  Aravinthan D. T. Samuel,et al.  Temporal analysis of stochastic turning behavior of swimming C. elegans. , 2009, Journal of neurophysiology.

[27]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[28]  George Sugihara,et al.  Detecting Causality in Complex Ecosystems , 2012, Science.

[29]  Annika L A Nichols,et al.  A global brain state underlies C. elegans sleep behavior , 2017, Science.

[30]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[31]  Cori Bargmann,et al.  The C.elegans AWA Olfactory Neuron Fires Calcium-Mediated All-or-None Action Potentials , 2018, bioRxiv.

[32]  Yves Frégnac,et al.  Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain? , 2017, Science.

[33]  Allen I. Selverston,et al.  Are central pattern generators understandable? , 1980, Behavioral and Brain Sciences.

[34]  F. Takens Detecting strange attractors in turbulence , 1981 .

[35]  Jin Wang,et al.  Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations , 2008, Proceedings of the National Academy of Sciences.

[36]  John M. Beggs,et al.  A Maximum Entropy Model Applied to Spatial and Temporal Correlations from Cortical Networks In Vitro , 2008, The Journal of Neuroscience.

[37]  Konrad Paul Kording,et al.  Could a Neuroscientist Understand a Microprocessor? , 2016, bioRxiv.

[38]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[39]  A. Selverston,et al.  Oscillatory neural networks. , 1985, Annual review of physiology.

[40]  Cori Bargmann,et al.  C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials , 2018, Cell.

[41]  Scott W. Linderman,et al.  Hierarchical recurrent state space models reveal discrete and continuous dynamics of neural activity in C. elegans , 2019, bioRxiv.

[42]  Sharad Ramanathan,et al.  Optical interrogation of neural circuits in Caenorhabditis elegans , 2009, Nature Methods.

[43]  John P. Miller,et al.  Temporal encoding in nervous systems: A rigorous definition , 1995, Journal of Computational Neuroscience.

[44]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[45]  Ashley N. Linder,et al.  Predicting natural behavior from whole-brain neural dynamics , 2018, bioRxiv.

[46]  J. Miller,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric system. , 1980, Journal of neurophysiology.

[47]  Gerd Pfister,et al.  Comparison of algorithms calculating optimal embedding parameters for delay time coordinates , 1992 .

[48]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[49]  D. A. Baxter,et al.  Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron. , 2002, Journal of neurophysiology.

[50]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[51]  Matthew T. Kaufman,et al.  Cortical Preparatory Activity: Representation of Movement or First Cog in a Dynamical Machine? , 2010, Neuron.

[52]  D. Raizen,et al.  FMRFamide-like FLP-13 Neuropeptides Promote Quiescence following Heat Stress in Caenorhabditis elegans , 2014, Current Biology.

[53]  Michael J. Berry,et al.  The simplest maximum entropy model for collective behavior in a neural network , 2012, 1207.6319.

[54]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[55]  E. Marder,et al.  Global Structure, Robustness, and Modulation of Neuronal Models , 2001, The Journal of Neuroscience.

[56]  Stanley J. Rosenschein,et al.  A dynamical systems perspective on agent-environment interaction , 1996 .

[57]  Emery N. Brown,et al.  The BRAIN Initiative: developing technology to catalyse neuroscience discovery , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[58]  H S Seung,et al.  How the brain keeps the eyes still. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Prevedel,et al.  Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light , 2013, Nature Methods.

[60]  D. Ruelle,et al.  Recurrence Plots of Dynamical Systems , 1987 .

[61]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[62]  Zhaoyu Li,et al.  Encoding of Both Analog- and Digital-like Behavioral Outputs by One C. elegans Interneuron , 2014, Cell.

[63]  Jonathan D. Victor,et al.  Metric-space analysis of spike trains: theory, algorithms and application , 1998, q-bio/0309031.

[64]  David Biron,et al.  The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor , 2013, BMC Neuroscience.

[65]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[66]  Sheng Zhong,et al.  Voltage and Calcium Imaging of Brain Activity. , 2017, Biophysical journal.

[67]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[68]  E. Marder,et al.  Failure of averaging in the construction of a conductance-based neuron model. , 2002, Journal of neurophysiology.

[69]  D. Hartline,et al.  Pattern generation in the lobster (Panulirus) stomatogastric ganglion , 1979, Biological Cybernetics.

[70]  Eran Stark,et al.  Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. , 2014, Journal of neurophysiology.

[71]  Steven W. Flavell,et al.  Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit , 2015, Cell.

[72]  Ronald R. Coifman,et al.  Multivariate time-series analysis and diffusion maps , 2015, Signal Process..

[73]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[74]  Paul W Sternberg,et al.  Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans , 2007, Nature Neuroscience.

[75]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[76]  Aravinthan D. T. Samuel,et al.  Dynamic Encoding of Perception, Memory, and Movement in a C. elegans Chemotaxis Circuit , 2014, Neuron.

[77]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[78]  W. Kristan,et al.  Rhythmic swimming activity in neurones of the isolated nerve cord of the leech. , 1976, The Journal of experimental biology.

[79]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[80]  Steven B Augustine,et al.  A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans , 2016, eLife.

[81]  Cori Bargmann,et al.  High-throughput imaging of neuronal activity in Caenorhabditis elegans , 2013, Proceedings of the National Academy of Sciences.