Cryogenic colocalization microscopy for nanometer-distance measurements.

The main limiting factor in spatial resolution of localization microscopy is the number of detected photons. Recently we showed that cryogenic measurements improve the photostability of fluorophores, giving access to Angstrom precision in localization of single molecules. Here, we extend this method to colocalize two fluorophores attached to well-defined positions of a double-stranded DNA. By measuring the separations of the fluorophore pairs prepared at different design positions, we verify the feasibility of cryogenic distance measurement with sub-nanometer accuracy. We discuss the important challenges of our method as well as its potential for further improvement and various applications.

[1]  Jürgen Köhler,et al.  Far-field fluorescence microscopy beyond the diffraction limit , 1999 .

[2]  Christian L. Müller,et al.  High-speed nanoscopic tracking of the position and orientation of a single virus , 2009, Nature Methods.

[3]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[4]  Robert M. Dickson,et al.  Imaging Three-Dimensional Single Molecule Orientations , 1999 .

[5]  L. Mets,et al.  Nanometer-localized multiple single-molecule fluorescence microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[7]  E. Betzig,et al.  Proposed method for molecular optical imaging. , 1995, Optics letters.

[8]  Zygmunt Gryczynski,et al.  Single molecule studies of multiple-fluorophore labeled antibodies. Effect of homo-FRET on the number of photons available before photobleaching. , 2008, Current pharmaceutical biotechnology.

[9]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[10]  Sean Quirin,et al.  Limits of 3D dipole localization and orientation estimation for single-molecule imaging: towards Green's tensor engineering. , 2012, Optics express.

[11]  G. Temple The physical principles of the quantum theory , 1932 .

[12]  T. Südhof,et al.  Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ , 2013, Proceedings of the National Academy of Sciences.

[13]  Alessandro Borgia,et al.  Single-molecule studies of protein folding. , 2008, Annual review of biochemistry.

[14]  Kristin L. Hazelwood,et al.  A bright and photostable photoconvertible fluorescent protein for fusion tags , 2009, Nature Methods.

[15]  P. Annibale,et al.  Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy. , 2013, Biochemical Society transactions.

[16]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[17]  Temperature-cycle single-molecule FRET microscopy on polyprolines. , 2011, Physical chemistry chemical physics : PCCP.

[18]  W. Moerner,et al.  Optical detection and spectroscopy of single molecules in a solid. , 1989, Physical review letters.

[19]  P. Bordat,et al.  Coherent electronic coupling versus localization in individual molecular dimers. , 2004, Physical review letters.

[20]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[21]  T. Ha,et al.  Single-molecule high-resolution imaging with photobleaching. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[23]  Alois Renn,et al.  Fluorescence Microscopy of Single Molecules , 1994 .

[24]  P. Hagerman Flexibility of DNA. , 1988, Annual review of biophysics and biophysical chemistry.

[25]  B. Schuler,et al.  Single-molecule spectroscopy of protein folding dynamics--expanding scope and timescales. , 2013, Current opinion in structural biology.

[26]  Paul R Selvin,et al.  Single-molecule-based super-resolution images in the presence of multiple fluorophores. , 2011, Nano letters.

[27]  Dylan T Burnette,et al.  Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules , 2011, Proceedings of the National Academy of Sciences.

[28]  Steven F. Lee,et al.  Improved super-resolution microscopy with oxazine fluorophores in heavy water. , 2013, Angewandte Chemie.

[29]  F. Würthner,et al.  J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. , 2011, Angewandte Chemie.

[30]  Paul R Selvin,et al.  Polarization effect on position accuracy of fluorophore localization. , 2006, Optics express.

[31]  Frank Würthner,et al.  J‐Aggregate: von ihrer zufälligen Entdeckung bis zum gezielten supramolekularen Aufbau funktioneller Farbstoffmaterialien , 2011 .

[32]  E. Isacoff,et al.  AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting , 2013, Proceedings of the National Academy of Sciences.

[33]  Klaus Müllen,et al.  Electronic excitation energy transfer between two single molecules embedded in a polymer host. , 2007, Physical review letters.

[34]  Steven F. Lee,et al.  Verbesserte hochauflösende Mikroskopie mit Oxazinfarbstoffen in schwerem Wasser , 2013 .

[35]  D. Bourgeois,et al.  Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron. , 2011, Journal of the American Chemical Society.

[36]  V. Sandoghdar,et al.  Nanometer Resolution and Coherent Optical Dipole Coupling of Two Individual Molecules , 2002, Science.

[37]  Shu Jia,et al.  Ultra-bright Photoactivatable Fluorophores Created by Reductive Caging , 2012, Nature Methods.

[38]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[39]  Daniel F Gilbert,et al.  Performance of scientific cameras with different sensor types in measuring dynamic processes in fluorescence microscopy , 2013, Microscopy research and technique.

[40]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[41]  S. Ram,et al.  Localization accuracy in single-molecule microscopy. , 2004, Biophysical journal.

[42]  Titiwat Sungkaworn,et al.  Single-molecule analysis of fluorescently labeled G-protein–coupled receptors reveals complexes with distinct dynamics and organization , 2012, Proceedings of the National Academy of Sciences.

[43]  Thorsten Staudt,et al.  Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. , 2011, Nano letters.

[44]  Frank Cichos,et al.  Power-law intermittency of single emitters , 2007 .

[45]  Gregory D. Scholes,et al.  Resonance energy transfer: Beyond the limits , 2011 .

[46]  Matthew D Lew,et al.  Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. , 2013, Nano letters.

[47]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[48]  M. Orrit,et al.  Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. , 1990, Physical review letters.