A Lyapunov View on the Stability of Two-State Cellular Automata
暂无分享,去创建一个
[1] A. M. Lyapunov. The general problem of the stability of motion , 1992 .
[2] F. Bagnoli,et al. Thermodynamic entropy and chaos in a discrete hydrodynamical system. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] S. Ruffo,et al. Damage spreading and Lyapunov exponents in cellular automata , 1992 .
[4] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[5] John von Neumann,et al. Theory Of Self Reproducing Automata , 1967 .
[6] B. De Baets,et al. Effect of asynchronous updating on the stability of cellular automata , 2012 .
[7] T. Czárán. The global dynamics of cellular automata: by Andrew Wuensche and Mike Lesser, Addison-Wesley, 1992. £39.69 hbk (xvii + 250 pages) ISBN 0 201 55740 1 , 1993 .
[8] S. M. Ulam,et al. RECURSIVELY DEFINED GEOMETRICAL OBJECTS AND PATTERNS OF GROWTH. , 1967 .
[9] Stephen Wolfram,et al. Universality and complexity in cellular automata , 1983 .
[10] Bernard De Baets,et al. Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. , 2010, Chaos.
[11] Towards the Full Lyapunov Spectrum of Elementary Cellular Automata , 2011 .
[12] E. F. Codd,et al. Cellular automata , 1968 .
[13] Christopher G. Langton,et al. Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .
[14] Andrew Ilachinski,et al. Cellular Automata: A Discrete Universe , 2001 .
[15] E. F. Moore. Machine Models of Self-Reproduction , 1962 .
[16] Gérard Y. Vichniac,et al. Boolean derivatives on cellular automata , 1991 .
[17] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .