On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations

[1]  Jer-Guang Hsieh,et al.  On α-stability criteria of nonlinear systems with multiple time delays , 1998 .

[2]  C. D. Souza,et al.  Robust exponential stability of uncertain systems with time-varying delays , 1998, IEEE Trans. Autom. Control..

[3]  James Lam,et al.  Computation of robust stability bounds for time-delay systems with nonlinear time-varying perturbations , 2000, Int. J. Syst. Sci..

[4]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[5]  Pin-Lin Liu,et al.  Exponential stability for linear time-delay systems with delay dependence , 2003, J. Frankl. Inst..

[6]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[7]  Q. Han Robust stability for a class of linear systems with time-varying delay and nonlinear perturbations☆ , 2004 .

[8]  Jin-Hua She,et al.  New delay-dependent stability criteria and stabilizing method for neutral systems , 2004, IEEE Trans. Autom. Control..

[9]  Vladimir L. Kharitonov,et al.  Exponential estimates for time delay systems , 2004, Syst. Control. Lett..

[10]  Li Yu,et al.  Robust stability of linear neutral systems with nonlinear parameter perturbations , 2004 .

[11]  Qing-Long Han A new delay-dependent stability criterion for linear neutral systems with norm-bounded uncertainties in all system matrices , 2005, Int. J. Syst. Sci..

[12]  Ju H. Park,et al.  Novel stability criterion of time delay systems with nonlinear uncertainties , 2005, Appl. Math. Lett..

[13]  Joaquín Collado,et al.  Exponential estimates for neutral time-delay systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[14]  Vladimir L. Kharitonov,et al.  Exponential estimates for retarded time-delay systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[15]  Ju H. Park,et al.  Matrix Inequality Approach to a Novel Stability Criterion for Time-Delay Systems with Nonlinear Uncertainties , 2005 .

[16]  Z. Zuo,et al.  New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations , 2006 .

[17]  Ju H. Park,et al.  Exponential stability of uncertain dynamic systems including state delay , 2006, Appl. Math. Lett..

[18]  Shengyuan Xu,et al.  New Exponential Estimates for Time-Delay Systems , 2006, IEEE Transactions on Automatic Control.

[19]  Chang-Hua Lien,et al.  Global exponential stability conditions for generalized state-space systems with time-varying delays , 2008 .