Characterizing Rocky and Gaseous Exoplanets with 2 m Class Space-based Coronagraphs

Several concepts now exist for small, space-based missions to directly characterize exoplanets in reflected light. Here, we develop an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. We adopt a baseline set of telescope and instrument parameters appropriate for near-future planned missions like WFIRST-AFTA, including a 2 m diameter primary aperture, an operational wavelength range of 0.4-1.0 um, and an instrument spectral resolution of 70, and apply our baseline model to a variety of spectral models of different planet types, including Earth twins, Jupiter twins, and warm and cool Jupiters and Neptunes. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main sequence stars of various effective temperatures, and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization, we study the integration times required to achieve moderate signal-to-noise ratio spectra. We also explore the sensitivity of the integration times required to either detect the bottom or presence of key absorption bands to coronagraph raw contrast performance, exozodiacal light levels, and the distance to the planetary system. Decreasing detector quantum efficiency at longer visible wavelengths makes the detection of water vapor in the atmospheres of Earth-like planets extremely challenging, and also hinders detections of the 0.89 um methane band. Additionally, most modeled observations have noise dominated by dark current, indicating that improving CCD performance could substantially drive down requisite integration times. Finally, we briefly discuss the extension of our models to a more distant future Large UV-Optical-InfraRed (LUVOIR) mission.

[1]  Jacob L. Bean,et al.  NEW ANALYSIS INDICATES NO THERMAL INVERSION IN THE ATMOSPHERE OF HD 209458b , 2014, 1409.5336.

[2]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[3]  Rhonda M. Morgan,et al.  Initial look at the coronagraph technology gaps for direct imaging of exo-earths , 2015, SPIE Optical Engineering + Applications.

[4]  A. Drummond,et al.  Extraterrestrial solar spectrum , 1973 .

[5]  A. Burrows Scientific Return of Coronagraphic Exoplanet Imaging and Spectroscopy Using WFIRST , 2014, 1412.6097.

[6]  A. Burrows,et al.  THE DIRECT DETECTABILITY OF GIANT EXOPLANETS IN THE OPTICAL , 2015, 1505.07832.

[7]  Frantz Martinache,et al.  An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy , 2015 .

[8]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[9]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[10]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[11]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[12]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[13]  Timothy D. Brandt,et al.  Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth , 2014, Proceedings of the National Academy of Sciences.

[14]  W. Traub,et al.  Atmospheric characterization of cold exoplanets using a 1.5-m coronagraphic space telescope , 2012, 1203.2826.

[15]  M. McElwain,et al.  LOWER LIMITS ON APERTURE SIZE FOR AN EXOEARTH DETECTING CORONAGRAPHIC MISSION , 2015, 1506.01723.

[16]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[17]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[18]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[19]  M. Marley,et al.  A Quick Study of the Characterization of Radial Velocity Giant Planets in Reflected Light by Forward and Inverse Modeling , 2014, 1412.8440.

[20]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[21]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[22]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[23]  Edward W. Schwieterman,et al.  DETECTION OF OCEAN GLINT AND OZONE ABSORPTION USING LCROSS EARTH OBSERVATIONS , 2014, 1405.4557.

[24]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[25]  N. Santos,et al.  Near-infrared transmission spectrum of the warm-uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope , 2014, 1405.1056.

[26]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[27]  O. Absil,et al.  Impact of ηEarth on the Capabilities of Affordable Space Missions to Detect Biosignatures on Extrasolar Planets , 2015, 1504.08232.

[28]  Renyu Hu Ammonia, Water Clouds and Methane Abundances of Giant Exoplanets and Opportunities for Super-Earth Exoplanets , 2014 .

[29]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[30]  D. Mawet,et al.  Diversity among other worlds: characterization of exoplanets by direct detection , 2008 .

[31]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[32]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[33]  Aki Roberge,et al.  The Search for Habitable Worlds. 1. The Viability of a Starshade Mission , 2012 .

[34]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[35]  Robert A. Brown Single-Visit Photometric and Obscurational Completeness , 2005, astro-ph/0503077.

[36]  E. Karkoschka Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD–Spectrophotometry , 1998 .

[37]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[38]  Aki Roberge,et al.  The Exozodiacal Dust Problem for Direct Observations of Exo-Earths , 2012, 1204.0025.

[39]  N. J. Kasdin,et al.  Analyzing the Designs of Planet-Finding Missions , 2009, 0903.4915.

[40]  Adam Burrows,et al.  Spectra and Diagnostics for the Direct Detection of Wide-Separation Extrasolar Giant Planets , 2004, astro-ph/0401522.

[41]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[42]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[43]  Aki Roberge,et al.  MAXIMIZING THE ExoEarth CANDIDATE YIELD FROM A FUTURE DIRECT IMAGING MISSION , 2014, 1409.5128.

[44]  Eric Agol Rounding up the wanderers: optimizing coronagraphic searches for extrasolar planets , 2007 .

[45]  Remi Soummer,et al.  NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION , 2010 .

[46]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[47]  A. Quirrenbach,et al.  Worlds Beyond: A Strategy for the Detection and Characterization of Exoplanets , 2008, 0808.2754.

[48]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[49]  Jacob L. Bean,et al.  HUBBLE SPACE TELESCOPE NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B , 2014, 1403.4602.

[50]  John Asher Johnson,et al.  THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS , 2013, 1307.5849.

[51]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[52]  F. Ozel,et al.  Enduring Quests-Daring Visions (NASA Astrophysics in the Next Three Decades) , 2014, 1401.3741.

[53]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[54]  Tyler D. Robinson,et al.  DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT , 2010, 1008.3864.

[55]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[56]  C. Hansen,et al.  Features in the broad-band eclipse spectra of exoplanets: signal or noise? , 2014, 1402.6699.

[57]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .