Regranulation: A granular algorithm enabling communication between granular worlds

Abstract In this paper, we describe a granular algorithm for translating information between two granular worlds, represented as fuzzy rulebases. These granular worlds are defined on the same universe of discourse, but employ different granulations of this universe. In order to translate information from one granular world to the other, we must regranulate the information so that it matches the information granularity of the target world. This is accomplished through the use of a first-order interpolation algorithm, implemented using linguistic arithmetic , a set of elementary granular computing operations. We first demonstrate this algorithm by studying the common “fuzzy-PD” rulebase at several different granularities, and conclude that the “3 × 3” granulation may be too coarse for this objective. We then examine the question of what the “natural” granularity of a system might be; this is studied through a 10-fold cross-validation experiment involving three different granulations of the same underlying mapping. For the problem under consideration, we find that a 7 × 7 granulation appears to be the minimum necessary precision.

[1]  Witold Pedrycz,et al.  Granular worlds: Representation and communication problems , 2000 .

[2]  L. Zadeh A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges , 1972 .

[3]  Didier Dubois,et al.  On several definitions of the differential of a fuzzy mapping , 1987 .

[4]  Witold Pedrycz,et al.  Fuzzy descriptive models: an interactive framework of information granulation [ECG data] , 2002, IEEE Trans. Fuzzy Syst..

[5]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[6]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[7]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Abraham Kandel,et al.  A granular counterpart to the gradient operator , 2002, Soft Comput..

[9]  N. N. Karnik,et al.  Introduction to type-2 fuzzy logic systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[10]  D. Dubois,et al.  Systems of linear fuzzy constraints , 1980 .

[11]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[12]  James M. Keller,et al.  Analysis and efficient implementation of a linguistic fuzzy c-means , 2002, IEEE Trans. Fuzzy Syst..

[13]  A. Kandel Fuzzy Mathematical Techniques With Applications , 1986 .

[14]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[15]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[16]  V. J. Rayward-Smith,et al.  Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition , 1999 .

[17]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[18]  R. Yager A characterization of the extension principle , 1986 .

[19]  D. Dubois,et al.  Additions of interactive fuzzy numbers , 1981 .

[20]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[21]  Paul D. Gader,et al.  Generalized Choquet fuzzy integral fusion , 2002, Inf. Fusion.

[22]  Witold Pedrycz,et al.  Reconstruction problem and information granularity , 1997, IEEE Trans. Fuzzy Syst..

[23]  Michel Grabisch,et al.  Fuzzy aggregation of numerical preferences , 1999 .

[24]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[25]  Witold Pedrycz,et al.  A parametric model for fusing heterogeneous fuzzy data , 1996, IEEE Trans. Fuzzy Syst..

[26]  Witold Pedrycz,et al.  On elicitation of membership functions , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[27]  Ronald E. Giachetti,et al.  A parametric representation of fuzzy numbers and their arithmetic operators , 1997, Fuzzy Sets Syst..

[28]  Dug Hun Hong,et al.  A T-sum bound of LR-fuzzy numbers , 1997, Fuzzy Sets Syst..

[29]  Michio Sugeno,et al.  A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..

[30]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[31]  Boris Stilman LINGUISTIC GEOMETRY: METHODOLOGY AND TECHNIQUES , 1995 .

[32]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[33]  M. Braae,et al.  Selection of parameters for a fuzzy logic controller , 1979 .

[34]  M. Braae,et al.  Theoretical and linguistic aspects of the fuzzy logic controller , 1979, Autom..

[35]  Witold Pedrycz,et al.  Granular Computing - The Emerging Paradigm , 2007 .

[36]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[37]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[38]  Witold Pedrycz,et al.  Two nonparametric models for fusing heterogeneous fuzzy data , 1998, IEEE Trans. Fuzzy Syst..

[39]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[40]  Oded Maimon Knowledge Discovery and Data Mining : The Info-Fuzzy Network (IFN) Methodology , 2000 .

[41]  Johan de Kleer,et al.  A Qualitative Physics Based on Confluences , 1984, Artif. Intell..

[42]  George Lakoff,et al.  Hedges: A Study In Meaning Criteria And The Logic Of Fuzzy Concepts , 1973 .

[43]  Witold Pedrycz,et al.  Relational and directional aspects in the construction of information granules , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[44]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[45]  László T. Kóczy,et al.  Improvements and critique on Sugeno's and Yasukawa's qualitative modeling , 2002, IEEE Trans. Fuzzy Syst..

[46]  Kersten Meier Methods for decision making with cardinal numbers and additive aggregation , 1997, Fuzzy Sets Syst..

[47]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[48]  Abraham Kandel,et al.  Granular computing in neural networks , 2001 .

[49]  Mingsheng Ying,et al.  A formal model of computing with words , 2002, IEEE Trans. Fuzzy Syst..

[50]  Dapeng Li,et al.  A numerical approach to linguistic variables and linguistic space , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[51]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[52]  Andrzej Bargiela,et al.  Recursive information granulation: aggregation and interpretation issues , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[53]  Nikhil R. Pal,et al.  Similarity-based approximate reasoning: methodology and application , 2002, IEEE Trans. Syst. Man Cybern. Part A.