Dynamic detuning in actively mode-locked semiconductor lasers

The authors describe a new limit on the achievable pulsewidth from actively mode-locked semiconductor lasers which is due to dynamic detuning. Dynamic detuning sets a higher limit on pulsewidth than the effects of finite gain bandwidth and dispersion, agreeing with experimental results which show pulsewidths much longer than expected if dynamic detuning is neglected. The dynamic detuning mechanism gives rise to the multiple-pulse output seen for all measurements of subpicosecond pulses and can lead to an unstable output waveform if a perfect antireflection coating is used. The analysis uses the traveling-wave rate equations to include a spatial variation in carrier and photon densities along the laser cavity and also includes the nonzero reflectivity on the antireflection-coated facet. The effects of phase at the antireflection-coated facet and dynamic carrier heating are included in the model. >

[1]  M. Adams,et al.  Influence of spectral hole-burning on quaternary laser transients , 1983 .

[2]  Erich P. Ippen,et al.  Subpicosecond gain dynamics in GaAlAs laser diodes , 1987 .

[3]  Naoki Chinone,et al.  High Relaxation Oscillation Frequency (beyond 10 GHz) of GaAlAs Multiquantum Well Lasers , 1985 .

[4]  Chin B. Su,et al.  Effect of doping level on the gain constant and modulation bandwidth of InGaAsP semiconductor lasers , 1984 .

[5]  Y. Silberberg,et al.  Subpicosecond pulses from a mode-locked semiconductor laser , 1986 .

[6]  Kam Y. Lau,et al.  Direct modulation of semiconductor lasers at f>10 GHz by low‐temperature operation , 1984 .

[7]  Scott W. Corzine,et al.  Actively mode‐locked GaInAsP laser with subpicosecond output , 1988 .

[8]  J. Goodwin,et al.  Modulation detuning characteristics of actively mode-locked diode lasers , 1983 .

[9]  Gadi Eisenstein,et al.  Optical time-division multiplexing for very high bit-rate transmission , 1988 .

[10]  Amnon Yariv,et al.  Direct modulation and active mode locking of ultrahigh speed GaAlAs lasers at frequencies up to 18 GHz , 1985 .

[11]  M. Demokan A model of a diode laser actively mode-locked by gain modulation , 1986 .

[12]  W. Chow,et al.  Saturation effects in semiconductor lasers , 1987 .

[13]  R. Olshansky,et al.  Effect of nonlinear gain on the bandwidth of semiconductor lasers , 1985 .

[14]  A. Morimoto,et al.  Active mode locking of lasers using an electrooptic deflector , 1988 .

[15]  E. Ippen,et al.  Picosecond pulse generation by passive mode locking of diode lasers , 1980 .

[16]  W. Lamb,et al.  Propagation of light pulses in a laser amplifier , 1969 .

[17]  Hermann A. Haus,et al.  Picosecond pulse generation with a cw GaAlAs laser diode , 1978 .

[18]  A. Olsson,et al.  Active mode locking of linear and ring external-cavity semiconductor lasers , 1981, IEEE Journal of Quantum Electronics.

[19]  Kam Y. Lau,et al.  Passive and active mode locking of a semiconductor laser without an external cavity , 1985 .

[20]  R. Olshansky,et al.  The carrier-induced index change in AlGaAs and 1.3 µm InGaAsP diode lasers , 1983 .

[21]  C. W. Gabel,et al.  Picosecond electro‐optic sampling system , 1982 .

[22]  Uziel Koren,et al.  Active mode-locking characteristics of InGaAsP-single mode fiber composite cavity lasers , 1986 .

[23]  Minoru Yamada,et al.  Analysis of gain suppression in undoped injection lasers , 1981 .

[24]  R. A. Logan,et al.  Dispersion of the group velocity refractive index in GaAs double heterostructure lasers , 1983 .

[25]  U. Koren,et al.  20 GHz active mode-locking of a 1.55 μm InGaAsP laser , 1985 .

[26]  M. Saruwatari,et al.  Picosecond optical pulse compression from gain-switched 1.3 μm distributed-feedback laser diode through highly dispersive single-mode fibre , 1985 .

[27]  J. P. Ziel Active mode locking of double heterostructure lasers in an external cavity , 1981 .

[28]  Anthony E. Siegman,et al.  SIMPLE ANALYTIC EXPRESSIONS FOR AM AND FM MODE‐LOCKED PULSES IN HOMOGENEOUS LASERS , 1969 .

[29]  D. Bradley,et al.  Bandwidth-Limited Picosecond Pulse Generation in an Actively Mode-Locked GaAlAs Diode Laser , 1980 .

[30]  Simplified Theory of Picosecond Pulses in Lasers , 1971 .

[31]  G. New,et al.  New techniques in the theory of active mode-locking , 1983 .

[32]  Henry,et al.  Femtosecond carrier thermalization in dense Fermi seas. , 1988, Physical review letters.

[33]  S. Corzine,et al.  Actively mode-locked semiconductor lasers , 1989 .

[34]  G. New,et al.  Problems in the self-consistent profile approach to the theory of laser mode-locking , 1984 .

[35]  J. E. Carroll,et al.  Simplified theory for mode locking in injection lasers , 1979 .

[36]  Hermann A. Haus,et al.  Modelocking of Semiconductor Laser Diodes , 1981 .

[37]  G. New,et al.  Approach to the theory of mode locking by synchronous pumping. , 1982, Optics letters.

[38]  Govind P. Agrawal,et al.  Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers , 1987 .

[39]  D. A. Kleinman,et al.  The maser rate equations and spiking , 1964 .

[40]  K Furuya,et al.  Reduction of resonancelike peak in direct modulation due to carrier diffusion in injection laser. , 1978, Applied optics.

[41]  H. Haus,et al.  A theory of forced mode locking , 1975, IEEE Journal of Quantum Electronics.

[42]  Michiharu Nakamura,et al.  Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers , 1978 .

[43]  W. Lamb Theory of an optical maser , 1964 .

[44]  U. Koren,et al.  High-speed, polyimide-based semi-insulating planar buried heterostructures , 1987 .

[45]  J. B. Moreno Volume-averaged rate equations for planar and disk-cavity lasers , 1977 .

[46]  A. Siegman,et al.  FM and AM mode locking of the homogeneous laser - Part I: Theory , 1970 .

[47]  W. Powazinik,et al.  Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers , 1985 .

[48]  David A. B. Miller,et al.  Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities , 1985 .