van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.

We perform a comprehensive first-principles study of the electronic properties of van der Waals (vdW) trilayers via intercalating a two-dimensional (2D) monolayer (ML = BN, MoSe2, WS2, or WSe2) between a MoS2 bilayer to form various MoS2/ML/MoS2 sandwich trilayers. We find that the BN monolayer is the most effective sheet to decouple the interlayer vdW coupling of the MoS2 bilayer, and the resulting sandwich trilayer can recover the electronic structures of the MoS2 monolayer, particularly the direct-gap character. Further study of the MoS2/BN superlattices confirms the effectiveness of the BN monolayer for the decoupling of the MoS2-MoS2 interaction. In addition, the intercalation of a transition-metal dichalcogenide (TMDC) MoSe2 or WSe2 sheet makes the sandwich trilayer undergo an indirect-gap to direct-gap transition due to the newly formed heterogeneous S/Se interfaces. In contrast, the MoS2/WS2/MoS2 sandwich trilayer still retains the indirect-gap character of the MoS2 bilayer due to the lack of the heterogeneous S/Se interfaces. Moreover, the 3D superlattice of the MoS2/TMDC heterostructures also exhibits similar electronic band characters to the MoS2/TMDC/MoS2 trilayer heterostructures, albeit a slight decrease of the bandgap compared to the trilayers. Compared to the bulk MoS2, the 3D MoS2/TMDC superlattice can give rise to new and distinctive properties. Our study offers not only new insights into electronic properties of the vdW multilayer heterostructures but also guidance in designing new heterostructures to modify electronic structures of 2D TMDC crystals.

[1]  Xiaojun Wu,et al.  Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain , 2014, 1403.3172.

[2]  A. Jeffery,et al.  Two-Dimensional Nanosheets and Layered Hybrids of MoS2 and WS2 through Exfoliation of Ammoniated MS2 (M = Mo,W) , 2014 .

[3]  W. Mei,et al.  MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. , 2013, Nanoscale.

[4]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[5]  Lin-wang Wang,et al.  Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. , 2013, Nano letters.

[6]  Richard G. Hennig,et al.  Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts , 2013 .

[7]  Arkady V. Krasheninnikov,et al.  Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.

[8]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[9]  R. Hennig,et al.  Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting , 2013 .

[10]  S. Lau,et al.  Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. , 2013, ACS nano.

[11]  Santanu Mahapatra,et al.  Performance Analysis of Strained Monolayer ${\rm MoS}_{2}$ MOSFET , 2013, IEEE Transactions on Electron Devices.

[12]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[13]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[14]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[15]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[16]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[17]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[18]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[19]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[20]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[21]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[22]  S. Haigh,et al.  Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. , 2012, Nature materials.

[23]  Pawel Hawrylak,et al.  Electronic structure of a single MoS2 monolayer , 2012 .

[24]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[25]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[26]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[27]  J. Brivio,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[28]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[29]  Ying Dai,et al.  Graphene adhesion on MoS₂ monolayer: an ab initio study. , 2011, Nanoscale.

[30]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[31]  S. V. Morozov,et al.  Tunable metal-insulator transition in double-layer graphene heterostructures , 2011, 1107.0115.

[32]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[33]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[34]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[35]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[36]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[37]  G. Kresse,et al.  Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals , 2009 .

[38]  Shengbai Zhang,et al.  MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. , 2008, Journal of the American Chemical Society.

[39]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[40]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[41]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[42]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[47]  W. Marsden I and J , 2012 .

[48]  A. Neto,et al.  Two-dimensional crystals-based heterostructures: materials with tailored properties , 2012 .

[49]  D. Bowler,et al.  FAST TRACK COMMUNICATION: Chemical accuracy for the van der Waals density functional , 2010 .

[50]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .

[51]  L. Sehgal,et al.  Γ and B , 2004 .

[52]  and as an in , 2022 .

[53]  I. Miyazaki,et al.  AND T , 2022 .