Identifying non-additive multi-attribute value functions based on uncertain indifference statements

Multi-criteria decision analysis (MCDA) requires an accurate representation of the preferences of decision-makers, for instance in the form of a multi-attribute value function. Typically, additivity or other stringent assumptions about the preferences are made to facilitate elicitation by assuming a simple parametric form. When relaxing such assumptions, parameters cannot be elicited easily with standard methods. We present a novel approach for identifying multi-attribute value functions which can have any shape. As preference information indifference statements are used that can be elicited by trade-off questions. Instead of asking one indifference statement for each pair of attributes, we ask for multiple trade-offs at different points in the attribute space. This allows inferring parameters of complex value functions despite the simplicity of the preference statements. Parameters are estimated by taking into account preference and elicitation uncertainty with a probabilistic model. Statistical inference supports identifying the most adequate preference model out of several candidate models through quantifying the uncertainty and assessing the need for non-additivity. The approach is elaborated for determining value functions by hierarchical aggregation. We apply it to an assessment of the ecological state of rivers, which is used to support environmental management decisions in Switzerland. Preference models of four experts were quantified, confirming the feasibility of the approach and the relevance of considering non-additive functions. The method suggests a promising direction for improving the representation of preferences.

[1]  Paolo Viappiani,et al.  Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems , 2017, Artif. Intell..

[2]  S. Greco,et al.  MUSA-INT: Multicriteria customer satisfaction analysis with interacting criteria , 2014 .

[3]  Rakesh K. Sarin,et al.  Measurable Multiattribute Value Functions , 1979, Oper. Res..

[4]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[5]  Tommi Tervonen,et al.  Entropy-optimal weight constraint elicitation with additive multi-attribute utility models , 2016 .

[6]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[7]  Michel Grabisch,et al.  A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..

[8]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[9]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[10]  Salvatore Greco,et al.  Robust ordinal regression for value functions handling interacting criteria , 2014, Eur. J. Oper. Res..

[11]  P. Reichert,et al.  Integrating and extending ecological river assessment: Concept and test with two restoration projects , 2017 .

[12]  Jun Zheng,et al.  A scenario-based MCDA framework for wastewater infrastructure planning under uncertainty. , 2016, Journal of environmental management.

[13]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[14]  Milosz Kadzinski,et al.  Robust ordinal regression in preference learning and ranking , 2013, Machine Learning.

[15]  Y. Ye,et al.  Interior Algorithms for Linear, Quadratic, and Linearly Constrained Convex Programming , 1997 .

[16]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[17]  Vincent Mousseau,et al.  The effect of bi-criteria conflict on matching-elicited preferences , 2015, Eur. J. Oper. Res..

[18]  A. Tversky,et al.  Contingent weighting in judgment and choice , 1988 .

[19]  P. Liechti,et al.  Scientific base and modular concept for comprehensive assessment of streams in Switzerland , 2000 .

[20]  Jay I. Myung,et al.  Model selection by Normalized Maximum Likelihood , 2006 .

[21]  Rakesh K. Sarin,et al.  RELATIVE RISK AVERSION. , 1982 .

[22]  Peter Reichert,et al.  The conceptual foundation of environmental decision support. , 2015, Journal of environmental management.

[23]  Jay I. Myung,et al.  Optimal experimental design for model discrimination. , 2009, Psychological review.

[24]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[25]  Theodor J. Stewart,et al.  Multiple criteria decision analysis - an integrated approach , 2001 .

[26]  H. Welsch,et al.  Meaningful environmental indices: a social choice approach , 2004 .

[27]  Valerie Belton,et al.  Are objectives hierarchy related biases observed in practice? A meta-analysis of environmental and energy applications of Multi-Criteria Decision Analysis , 2018, Eur. J. Oper. Res..

[28]  Roman Słowiński,et al.  RUTA: a framework for assessing and selecting additive value functions on the basis of rank related requirements , 2013 .

[29]  Gregory M Peters,et al.  Aggregating sustainability indicators: beyond the weighted sum. , 2012, Journal of environmental management.

[30]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[31]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[32]  W. Brouwer,et al.  In search of a preferred preference elicitation method: A test of the internal consistency of choice and matching tasks , 2013 .

[33]  Peter Reichert,et al.  How to make river assessments comparable: A demonstration for hydromorphology , 2013 .

[34]  D. Hensher How do respondents process stated choice experiments? Attribute consideration under varying information load , 2006 .

[35]  Ana Paula Cabral Seixas Costa,et al.  A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff , 2016, Eur. J. Oper. Res..

[36]  Joel Huber,et al.  Expressing Preferences in a Principal-Agent Task: A Comparison of Choice, Rating, and Matching , 2002 .

[37]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[38]  I. Simonson,et al.  Price–Quality Trade-Offs in Choice Versus Matching: New Insights Into the Prominence Effect , 1998 .

[39]  Lisa Scholten,et al.  Tackling uncertainty in multi-criteria decision analysis - An application to water supply infrastructure planning , 2015, Eur. J. Oper. Res..

[40]  Jürgen Branke,et al.  Using Indifference Information in Robust Ordinal Regression , 2015, EMO.

[41]  Judit Lienert,et al.  Four Common Simplifications of Multi-Criteria Decision Analysis do not hold for River Rehabilitation , 2016, PloS one.

[42]  Krzysztof Ciomek,et al.  Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models , 2017 .

[43]  Mark A. Pitt,et al.  Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach , 2013, Manag. Sci..

[44]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[45]  Peter Reichert,et al.  The method matters: a guide for indicator aggregation in ecological assessments , 2014 .

[46]  Ralph L. Keeney,et al.  Value-Focused Thinking: A Path to Creative Decisionmaking , 1992 .

[47]  Emanuele Borgonovo,et al.  Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions , 2015, Eur. J. Oper. Res..

[48]  A. Tversky,et al.  Loss Aversion in Riskless Choice: A Reference-Dependent Model , 1991 .

[49]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[50]  Peter Reichert,et al.  Constructing, evaluating and visualizing value and utility functions for decision support , 2013, Environ. Model. Softw..

[51]  S. Greco,et al.  Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model , 2016 .