A conservative level set method suitable for variable-order approximations and unstructured meshes

This paper presents a formulation for free-surface computations capable of handling complex phenomena, such as wave breaking, without excessive mass loss or smearing of the interface. The formulation is suitable for discretizations using finite elements of any topology and order, or other approaches such as isogeometric and finite volume methods. Furthermore, the approach builds on standard level set tools and can therefore be used to augment existing implementations of level set methods with discrete conservation properties. Implementations of the method are tested on several difficult two- and three-dimensional problems, including two incompressible air/water flow problems with available experimental results. Linear and quadratic approximations on unstructured tetrahedral and trilinear approximations on hexahedral meshes were tested. Global conservation and agreement with experiments as well as computations by other researchers are obtained.

[1]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[2]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[3]  A. Smolianski Finite‐element/level‐set/operator‐splitting (FELSOS) approach for computing two‐fluid unsteady flows with free moving interfaces , 2005 .

[4]  Mats G. Larson,et al.  A conservative flux for the continuous Galerkin method based on discontinuous enrichment , 2004 .

[5]  Cass T. Miller,et al.  Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems , 2002 .

[6]  S. Zaleski,et al.  Interface reconstruction with least‐square fit and split Eulerian–Lagrangian advection , 2003 .

[7]  R. Lahey,et al.  Computation of incompressible bubble dynamics with a stabilized finite element level set method , 2005 .

[8]  Björn Engquist,et al.  Regularization Techniques for Numerical Approximation of PDEs with Singularities , 2003, J. Sci. Comput..

[9]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[10]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[11]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[12]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[13]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[14]  W. Rider,et al.  Stretching and tearing interface tracking methods , 1995 .

[15]  Jean-François Remacle,et al.  A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows , 2006, J. Comput. Phys..

[16]  Habib N. Najm,et al.  Regular Article: A Semi-implicit Numerical Scheme for Reacting Flow , 1999 .

[17]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[18]  Arthur Veldman,et al.  A Volume-of-Fluid based simulation method for wave impact problems , 2005 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  Peter J. Mucha,et al.  A new method for simulating rigid body motion in incompressible two‐phase flow , 2011 .

[21]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[22]  Björn Engquist,et al.  A finite element based level-set method for multiphase flow applications , 2000 .

[23]  A. Smolianski Numerical Modeling of Two-Fluid Interfacial Flows , 2001 .

[24]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[25]  Matthew W. Farthing,et al.  Locally conservative, stabilized finite element methods for variably saturated flow , 2008 .

[26]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[27]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[28]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[29]  P. S. Wyckoff,et al.  A Semi-implicit Numerical Scheme for Reacting Flow , 1998 .

[30]  E. J. Holm,et al.  A method for simulating sharp fluid interfaces in groundwater flow , 1999 .

[31]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[32]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[33]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[34]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[35]  J. Craggs Applied Mathematical Sciences , 1973 .

[36]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[37]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[38]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[39]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[40]  Mark Sussman,et al.  A sharp interface method for incompressible two-phase flows , 2007, J. Comput. Phys..

[41]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[42]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[43]  Marek Behr,et al.  Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces , 1998 .

[44]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[45]  Taehun Lee,et al.  A level set characteristic Galerkin finite element method for free surface flows , 2005 .

[46]  Rutherford C. Berger,et al.  A Review of Methods for Moving Boundary Problems , 2009 .

[47]  Jalal Abedi,et al.  Parallel finite element simulation of mooring forces on floating objects , 2003 .

[48]  S. Koshizuka A particle method for incompressible viscous flow with fluid fragmentation , 1995 .

[49]  Li-Tien Cheng,et al.  Redistancing by flow of time dependent eikonal equation , 2008, J. Comput. Phys..

[50]  Rainald Löhner,et al.  On the simulation of flows with violent free surface motion , 2006 .

[51]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[52]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of inviscid supersonic flows with YZβ shock-Capturing , 2007 .

[53]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[54]  Thomas-Peter Fries,et al.  The intrinsic XFEM for two‐fluid flows , 2009 .

[55]  Zhangxin Chen,et al.  On the implementation of mixed methods as nonconforming methods for second-order elliptic problems , 1995 .

[56]  Tayfun E. Tezduyar,et al.  Moving‐interface computations with the edge‐tracked interface locator technique (ETILT) , 2005 .

[57]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[58]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[59]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[60]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[61]  Jean-François Remacle,et al.  A quadrature-free discontinuous Galerkin method for the level set equation , 2006, J. Comput. Phys..

[62]  Mikhail J. Shashkov,et al.  Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..

[63]  B. Engquist,et al.  Discretization of Dirac delta functions in level set methods , 2005 .

[64]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[65]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[66]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[67]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[68]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[69]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[70]  Alvaro L. G. A. Coutinho,et al.  Stabilized edge‐based finite element simulation of free‐surface flows , 2007 .

[71]  F. Durst,et al.  Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows , 2006 .

[72]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[73]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .