Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to β-Lactams

Rising drug resistance is limiting treatment options for infections by methicillin-resistant Staphylococcus aureus (MRSA). Herein we provide new evidence that wall teichoic acid (WTA) biogenesis is a remarkable antibacterial target with the capacity to destabilize the cooperative action of penicillin-binding proteins (PBPs) that underlie β-lactam resistance in MRSA. Deletion of gene tarO, encoding the first step of WTA synthesis, resulted in the restoration of sensitivity of MRSA to a unique profile of β-lactam antibiotics with a known selectivity for penicillin binding protein 2 (PBP2). Of these, cefuroxime was used as a probe to screen for previously approved drugs with a cryptic capacity to potentiate its activity against MRSA. Ticlopidine, the antiplatelet drug Ticlid, strongly potentiated cefuroxime, and this synergy was abolished in strains lacking tarO. The combination was also effective in a Galleria mellonella model of infection. Using both genetic and biochemical strategies, we determined the molecular target of ticlopidine as the N-acetylglucosamine-1-phosphate transferase encoded in gene tarO and provide evidence that WTA biogenesis represents an Achilles heel supporting the cooperative function of PBP2 and PBP4 in creating highly cross-linked muropeptides in the peptidoglycan of S. aureus. This approach represents a new paradigm to tackle MRSA infection.

[1]  R. Novick Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. , 1967, Virology.

[2]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[3]  E. Brown,et al.  Precise Deletion of tagD and Controlled Depletion of Its Product, Glycerol 3-Phosphate Cytidylyltransferase, Leads to Irregular Morphology and Lysis of Bacillus subtilisGrown at Physiological Temperature , 2001, Journal of bacteriology.

[4]  A. Tomasz,et al.  Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway , 2005, EMBO reports.

[5]  E. Brown,et al.  The Wall Teichoic Acid Polymerase TagF Efficiently Synthesizes Poly(glycerol phosphate) on the TagB Product Lipid III , 2008, Chembiochem : a European journal of chemical biology.

[6]  C. Weidenmaier,et al.  Influence of Wall Teichoic Acid on Lysozyme Resistance in Staphylococcus aureus , 2006, Journal of bacteriology.

[7]  Terry Roemer,et al.  Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. , 2011, Chemistry & biology.

[8]  C. Chong,et al.  New uses for old drugs , 2007, Nature.

[9]  B. Berger-Bächi,et al.  The targeting of factors necessary for expression of methicillin resistance in staphylococci. , 1998, The Journal of antimicrobial chemotherapy.

[10]  A. Tomasz,et al.  An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  C. Whitfield,et al.  Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis , 2002, Applied and Environmental Microbiology.

[12]  H. Mori,et al.  Two‐component system VraSR positively modulates the regulation of cell‐wall biosynthesis pathway in Staphylococcus aureus , 2003, Molecular microbiology.

[13]  M. Mulvey,et al.  Comparative Genomics of Canadian Epidemic Lineages of Methicillin-Resistant Staphylococcus aureus , 2007, Journal of Clinical Microbiology.

[14]  Paul D. R. Johnson,et al.  Failure of vancomycin for treatment of methicillin-resistant Staphylococcus aureus infections. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[15]  B. Berger-Bächi,et al.  Factors influencing methicillin resistance in staphylococci , 2002, Archives of Microbiology.

[16]  E. Brown,et al.  Wall Teichoic Acid Polymers Are Dispensable for Cell Viability in Bacillus subtilis , 2006, Journal of bacteriology.

[17]  D. Snydman,et al.  Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[18]  S. R. Nair,et al.  Use of Cefoxitin, New Cephalosporin-Like Antibiotic, in the Treatment of Aerobic and Anaerobic Infections , 1978, Antimicrobial Agents and Chemotherapy.

[19]  J. Morrissey,et al.  Comparison of the Regulation, Metabolic Functions, and Roles in Virulence of the Glyceraldehyde-3-Phosphate Dehydrogenase Homologues gapA and gapB in Staphylococcus aureus , 2010, Infection and Immunity.

[20]  A. Tomasz,et al.  Role of murE in the Expression of β-Lactam Antibiotic Resistance in Staphylococcus aureus , 2004, Journal of bacteriology.

[21]  T. Yamaguchi,et al.  Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus , 1994, Journal of bacteriology.

[22]  Y. Nagai,et al.  Genome and virulence determinants of high virulence community-acquired MRSA , 2002, The Lancet.

[23]  M. O'Reilly,et al.  The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage , 1983, Nature.

[24]  M. T. Parker,et al.  Methicillin resistance in Staphylococcus aureus. , 1970, Lancet.

[25]  A. Tomasz,et al.  Normally functioning murF is essential for the optimal expression of methicillin resistance in Staphylococcus aureus. , 2003, Microbial drug resistance.

[26]  B. Tsvetanova,et al.  Biosynthesis of the Tunicamycins: A Review , 2007, The Journal of Antibiotics.

[27]  C. Weidenmaier,et al.  Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions , 2008, Nature Reviews Microbiology.

[28]  A. Tomasz,et al.  Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. , 1999, Microbial drug resistance.

[29]  H. Morton,et al.  Staphylococcus aureus , 1948, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[30]  P. M. Pereira,et al.  Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus , 2010, Proceedings of the National Academy of Sciences.

[31]  S. Mobashery,et al.  Molecular Basis and Phenotype of Methicillin Resistance in Staphylococcus aureus and Insights into New β-Lactams That Meet the Challenge , 2009, Antimicrobial Agents and Chemotherapy.

[32]  Timothy C. Meredith,et al.  Exposing a chink in the armor of methicillin-resistant Staphylococcus aureus , 2013 .

[33]  E. Brown,et al.  CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. , 2003, Biochimica et biophysica acta.

[34]  A. Tomasz,et al.  Methicillin Resistance in Staphylococcus Essential for Expression of High-level Reassessment of the Number of Auxiliary Genes , 2022 .

[35]  Mike Tyers,et al.  Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. , 2011, Nature chemical biology.

[36]  B. Berger-Bächi Genetic basis of methicillin resistance in Staphylococcus aureus , 1999, Cellular and Molecular Life Sciences CMLS.

[37]  D. Aksoy,et al.  New antimicrobial agents for the treatment of Gram-positive bacterial infections. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[38]  G. Sensabaugh,et al.  Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus , 2006, The Lancet.

[39]  M. Sachdeva,et al.  Binding of beta-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. , 1990, The Journal of infectious diseases.

[40]  Daniel Lim,et al.  Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus , 2002, Nature Structural Biology.

[41]  J. C. Lee Electrotransformation of Staphylococci. , 1995, Methods in molecular biology.

[42]  B. Berger-Bächi,et al.  Staphylococcus aureus penicillin-binding protein 4 and intrinsic beta-lactam resistance , 1995, Antimicrobial agents and chemotherapy.

[43]  Eric Langlois,et al.  Restoring Methicillin-Resistant Staphylococcus aureus Susceptibility to β-Lactam Antibiotics , 2012, Science Translational Medicine.

[44]  N. Georgopapadakou,et al.  Binding of beta-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity , 1980, Antimicrobial Agents and Chemotherapy.

[45]  A. Luxen,et al.  New Noncovalent Inhibitors of Penicillin-Binding Proteins from Penicillin-Resistant Bacteria , 2011, PloS one.

[46]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[47]  Roberta B Carey,et al.  Invasive methicillin-resistant Staphylococcus aureus infections in the United States. , 2007, JAMA.

[48]  R. Dziarski Teichoic acids. , 1976, Current topics in microbiology and immunology.

[49]  R. Novick Genetic systems in staphylococci. , 1991, Methods in enzymology.

[50]  Hyun-Woo Rhee,et al.  Two Novel Point Mutations in Clinical Staphylococcus aureus Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection , 2010, PLoS pathogens.

[51]  R. Kishony,et al.  Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. , 2009, ACS chemical biology.

[52]  Daniel Lim,et al.  Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. , 2002, Nature structural biology.

[53]  A. Singh,et al.  Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. , 2011, ACS chemical biology.

[54]  Mary Jane Ferraro,et al.  Linezolid resistance in a clinical isolate of Staphylococcus aureus , 2001, The Lancet.

[55]  Wenjun Zhao,et al.  Lesions in Teichoic Acid Biosynthesis in Staphylococcus aureus Lead to a Lethal Gain of Function in the Otherwise Dispensable Pathway , 2006, Journal of bacteriology.

[56]  E. Brown,et al.  The N-Acetylmannosamine Transferase Catalyzes the First Committed Step of Teichoic Acid Assembly in Bacillus subtilis and Staphylococcus aureus , 2009, Journal of bacteriology.

[57]  E. Brown,et al.  Teichoic Acid Is an Essential Polymer in Bacillus subtilis That Is Functionally Distinct from Teichuronic Acid , 2004, Journal of bacteriology.

[58]  A. Tomasz,et al.  Role of Penicillin-Binding Protein 2 (PBP2) in the Antibiotic Susceptibility and Cell Wall Cross-Linking of Staphylococcus aureus: Evidence for the Cooperative Functioning of PBP2, PBP4, and PBP2A , 2005, Journal of bacteriology.

[59]  E. Duthie,et al.  Staphylococcal coagulase; mode of action and antigenicity. , 1952, Journal of general microbiology.

[60]  M. G. Pinho,et al.  Staphylococcus aureus PBP4 Is Essential for β-Lactam Resistance in Community-Acquired Methicillin-Resistant Strains , 2008, Antimicrobial Agents and Chemotherapy.

[61]  Chia Y. Lee,et al.  Construction of single-copy integration vectors for Staphylococcus aureus. , 1991, Gene.

[62]  H. Schwarz,et al.  Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl , 2010, Molecular microbiology.

[63]  F. Odds,et al.  Synergy, antagonism, and what the chequerboard puts between them. , 2003, The Journal of antimicrobial chemotherapy.

[64]  E. Brown,et al.  Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis. , 2009, Chemistry & biology.

[65]  N. Georgopapadakou,et al.  Penicillin-binding proteins in a Staphylococcus aureus strain resistant to specific beta-lactam antibiotics , 1982, Antimicrobial Agents and Chemotherapy.