Utilisation d'adhésifs respectueux de l'environnement pour la fabrication de panneaux dérivés du bois à faible émission de formaldéhyde : caractérisation des paramètres de pressage : évaluation des propriétés des panneaux

The standards concerning the formaldehyde emissions2 from wood based panels have become more restrictive; alternatives meeting the requirements of the standards are needed. Therefore, solutions for the industrial use of three types of adhesives were studied which are; tannin adhesives by silica-induced autocondensation, Urea-formaldehyde (UF) / polymeric phenyl isocyanate (pMDI) hybrid adhesives and formulations based on dimethoxyethanal (DME). The study related to the tannins showed that an industrial production of large particle particle boards pressed with steam injection is possible. The analyses made it possible to evaluate the tannin autocondensation reactions of the formulations and to optimize them for steam injection pressing. Most of the studied formulations satisfied the qualitative requirements of the standard for both internal bond strength and formaldehyde emission2. Besides, the potential use for exterior grade of these panels remains problematic. The experimentations on the UF/pMDI adhesives increased the knowledge in the field of the adhesives-panel properties interactions for medium density fiberboard (MDF). Important results were obtained by the study of the resin distribution by confocal laser scanning microscopy (CLSM). Best results concerning the improvement of the panel properties were obtained for adhesive mixtures with low molar ratio UF and emulsifiable pMDI, satisfying the requirements of the standard, grade F **. However, grade F **** could only be reached by using 100 % of MDI. During the study related to the formulations of DME derived resins, new adhesive formulations were developed. The most promising formulation was selected and validated on industrial scale. It has shown to be able to satisfy the qualitative requirements of the standards with low formaldehyde emission2.

[1]  J. Baghdachi Fundamentals of Adhesion , 2019, Adhesives for Wood and Lignocellulosic Materials.

[2]  A. Pizzi,et al.  Curing conditions effects on the characteristics of thermosetting adhesives-bonded wood joints , 1998, Holz als Roh- und Werkstoff.

[3]  A. Pizzi,et al.  Low addition of melamine salts for improved UF adhesives water resistance , 1996, Holz als Roh- und Werkstoff.

[4]  H. K. Cammenga,et al.  Investigation of the wetting characteristics of medium density fibreboards (MDF) by means of contact angle measurements , 1997, Holz als Roh- und Werkstoff.

[5]  Gary C. Myers,et al.  Resin Distribution in Hardboard: Evaluated by Internal Bond Strength and Fluorescence Microscopy , 2007 .

[6]  W. Grigsby,et al.  Resin Distribution in Medium Density Fiberboard. Quantification of UF Resin Distribution on Blowline-and Dry-Blended MDF Fiber and Panels , 2007 .

[7]  W. Grigsby,et al.  Microcrystallinity and colloidal peculiarities of UF/isocyanate hybrid resins , 2007 .

[8]  K. Hüttemann Holz als Roh- und Werkstoff , 1989, Holz als Roh- und Werkstoff.

[9]  K. Ernst Erfahrungen mit Isocyanaten in der Spanplattenindustrie , 1985, Holz als Roh- und Werkstoff.

[10]  H. Deppe Technische Fortschritte bei der Isocyanatverleimung von Holzspanplatten , 1977, Holz als Roh- und Werkstoff.

[11]  A. Pizzi,et al.  Autocondensation-based, zero-emission, tannin adhesives for particleboard , 2007, Holz als Roh- und Werkstoff.

[12]  W. Grigsby,et al.  The reaction in water of UF resins with isocyanates at short curing times: A 13C NMR investigation , 2006 .

[13]  A. Pizzi,et al.  Colloidal aggregation of aminoplastic polycondensation resins: Urea–formaldehyde versus melamine–formaldehyde and melamine–urea–formaldehyde resins , 2006 .

[14]  A. Pizzi,et al.  13C NMR investigation of the reaction in water of UF resins with blocked emulsifiable isocyanates , 2006 .

[15]  A. Despres Mise au point de nouvelles résines aminoplastes écologiques à base de diméthoxyéthanal et sans formaldéhyde pour application en tant que colles pour panneaux de particules , 2006 .

[16]  A. Pizzi,et al.  Structural beams from thick wood panels bonded industrially with formaldehyde-free tannin adhesives , 2006 .

[17]  A. Pizzi,et al.  Non-toxic, zero emission tannin-glyoxal adhesives for wood panels , 2005, Holz als Roh- und Werkstoff.

[18]  A. Pizzi,et al.  Rheometry of aging of colloidal melamine-urea-formaldehyde polycondensates , 2005 .

[19]  M. Stampanoni,et al.  Vibration welding of wood: X-ray tomography, additives, radical concentration , 2005 .

[20]  Antonio Pizzi,et al.  Influence of grain direction in vibrational wood welding , 2005 .

[21]  S. Wieland,et al.  Surface finishes by mechanically induced wood surface fusion , 2005, Holz als Roh- und Werkstoff.

[22]  A. McDonald,et al.  X-ray photoelectron spectroscopy determination of urea formaldehyde resin coverage on MDF fibre , 2004, Holz als Roh- und Werkstoff.

[23]  A. Pizzi,et al.  Colloidal aggregation of MUF polycondensation resins: Formulation influence and storage stability , 2004 .

[24]  A. Pizzi,et al.  X-ray microdensitometry analysis of vibration-welded wood , 2004 .

[25]  B. Riedl,et al.  The effects of temperature and humidity on phenol-formaldehyde resin bonding , 1995, Wood Science and Technology.

[26]  J. Dinwoodie,et al.  The validity of the use of SEM/EDAX as a tool for the detection of UF resin penetration into wood cell walls in particleboard , 1988, Wood Science and Technology.

[27]  B. Kasal,et al.  Radial reinforcement of curved glue laminated wood beams with composite materials , 2004 .

[28]  B. Riedl,et al.  Measurement of urea-formaldehyde resin distribution as a function of MDF fiber size by laser scanning microscopy , 2004, Wood Science and Technology.

[29]  Antonio Pizzi,et al.  Copolymerization in UF/pMDI adhesives networks , 2002 .

[30]  A. Pizzi,et al.  Dry I.B. forescasting of commercial tannin adhesives-bonded particleboard by TMA bending , 2001, Holz als Roh- und Werkstoff.

[31]  A. McDonald,et al.  Visualisation of UF resin in MDF by cathodoluminescence/ scanning electron microscopy , 2001, Holz als Roh- und Werkstoff.

[32]  K. A. Scott Economic Feasibility of Implementing a Resin Distribution Measurement System for MDF Fiber , 2001 .

[33]  A. Pizzi,et al.  Hot postcuring improvement of MUF-bonded particleboards and its temperature forecasting model , 2000, Holz als Roh- und Werkstoff.

[34]  V. Litvinov,et al.  Physical gelation of melamine formaldehyde resin solutions. II. A combined light‐scattering and low‐resolution relaxation proton NMR study , 1999 .

[35]  A. Pizzi,et al.  Hexamine hardener behaviour: effects on wood glueing, tannin and other wood adhesives , 1999, Holz als Roh- und Werkstoff.

[36]  S. Jahromi Storage stability of melamine‐formaldehyde resin solutions, 1. The mechanism of instability , 1999 .

[37]  S. Jahromi The storage stability of melamine formaldehyde resin solutions: III. Storage at elevated temperatures , 1999 .

[38]  W. Adam,et al.  Electron Energy Loss Spectroscopy (EELS) for Quantification of Cell-Wall Penetration of a Melamine Resin , 1999 .

[39]  A. Pizzi,et al.  Adhesion promotion techniques : technological applications , 1999 .

[40]  A. Thumm,et al.  Visualization and quantification of wax on MDF panels: a comparison of emulsion and molten waxes , 1998 .

[41]  A. Pizzi,et al.  An ESR study of the silica‐induced autocondensation of polyflavonoid tannins , 1996 .

[42]  F. Kamke,et al.  Measurement of resin and wax distribution on wood flakes , 1996 .

[43]  F. Kamke,et al.  Quantifying emulsified wax distribution on wood flakes , 1996 .

[44]  National Research Initiative Competitive Grants Program , 1995 .

[45]  A. Schouteeten,et al.  DME in Organic Synthesis. 2,2-Dimethoxyethanal, “A New Bond Between Your Molecules” , 1994 .

[46]  G. E. Myers,et al.  Behavior of Amine-Modified Urea-Formaldehyde-Bonded Wood Joints at low Formaldehyde/ Urea Molar Ratios , 1994 .

[47]  G. E. Myers,et al.  Polyamine-modified urea-formaldehyde-bonded wood joints. III: Fracture toughness and cyclic stress and hydrolysis resistance , 1993 .

[48]  J. Valenzuela,et al.  Non-Emulsifiable, Water-Based, Mixed Diisocyanate Adhesive Systems for Exterior Plywood. Part II. Theory Application and Industrial Results , 1993 .

[49]  Alan A. Marra,et al.  Technology of Wood Bonding : Principles in Practice , 1992 .

[50]  E. Ferg,et al.  The Correlation of Strength and Formaldehyde Emission with the Crystalline/Amorphous Structure of UF Resins , 1992 .

[51]  G. E. Myers,et al.  Polyamine‐modified urea‐formaldehyde resins. II. Resistance to stress induced by moisture cycling of solid wood joints and particleboard , 1991 .

[52]  G. E. Myers,et al.  Polyamine‐modified urea‐formaldehyde resins. I. Synthesis, structure, and properties , 1991 .

[53]  D. E. Brady,et al.  Effects of hot-pressing parameters on resin penetration , 1988 .

[54]  Gerd Habenicht,et al.  Kleben. Grundlagen, Technologie, Andwendungen , 1986 .

[55]  G. Myers,et al.  Electron Microscopy Study of Hardboards , 1986 .

[56]  Antonio Pizzi,et al.  Wood adhesives : chemistry and technology , 1983 .

[57]  K. W. Suen,et al.  Combinations of Low Formaldehyde-Aminoplast Glues and PMDI , 1982 .

[58]  Mathilde Tirard Panneaux de particules et panneaux de fibres , 1976 .

[59]  R. Good Theory of “Cohesive” vs “Adhesive” Separation in an Adhering System , 1972 .

[60]  T. Araki,et al.  On the Wood-adhesives. , 1946 .