Performance characteristics of the indicator classifier on simulated image data

Classification of remotely sensed imagery into groups of pixels having similar spectral reflectance characteristics is conducted classically by comparing the spectral signature of unknown pixels with those of training pixels of known ground cover type. Thus classification methods use only the spectral characteristics of image data without considering the spatial aspects or the relative location of an unknown pixel with respect to pixels from the training data set. An indicator classifier was introduced in 1992 that combines spatial and spectral information in a decision model. In this Letter the performance of this classifier is tested on simulated image data with known mineral targets and varying spatial variability and noise. It is demonstrated that incorporating spatial continuity into the classification process may largely increase the accuracy of the resulting classified images.