Solving the constrained p-center problem using heuristic algorithms

The p-center problem is one of the location problems that have been studied in operations research and computational geometry. This paper describes a compatible discrete space version of the heuristic Voronoi diagram algorithm. Since the algorithm gets stuck in local optimums in some cases, we apply a number of changes in the body of the algorithm with regard to the geometry of the problem, in a way that it can reach the global optimum with a high probability. Finally, a comparison between the results of these two algorithms on several test problems and a real-world problem are presented.

[1]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[2]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[3]  Blas Pelegrín,et al.  A new assignment rule to improve seed points algorithms for the continuous k-center problem , 1998 .

[4]  Antonio Galvão Naclério Novaes,et al.  Solving continuous location-districting problems with Voronoi diagrams , 2009, Comput. Oper. Res..

[5]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[6]  Zvi Drezner,et al.  The p-Centre Problem—Heuristic and Optimal Algorithms , 1984 .

[7]  Atsuyuki Okabe,et al.  Using Voronoi Diagrams , 1995 .

[8]  Zvi Drezner,et al.  The minimum equitable radius location problem with continuous demand , 2009, Eur. J. Oper. Res..

[9]  Martine Labbé,et al.  A New Formulation and Resolution Method for the p-Center Problem , 2004, INFORMS J. Comput..

[10]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[11]  M. Brandeau,et al.  An overview of representative problems in location research , 1989 .

[12]  Micha Sharir A Near-Linear Algorithm for the Planar 2-Center Problem , 1997, Discret. Comput. Geom..

[13]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[14]  Richard C. T. Lee,et al.  The slab dividing approach to solve the EuclideanP-Center problem , 2005, Algorithmica.

[15]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[16]  A. Frieze,et al.  A simple heuristic for the p-centre problem , 1985 .

[17]  D. Hearn,et al.  Geometrical Solutions for Some Minimax Location Problems , 1972 .

[18]  Mark S. Daskin,et al.  Network and Discrete Location: Models, Algorithms and Applications , 1995 .

[19]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[20]  Wolfgang Banzhaf,et al.  The use of computational intelligence in intrusion detection systems: A review , 2010, Appl. Soft Comput..

[21]  A. Colorni,et al.  Dominant, an algorithm for the p-center problem , 2003, Eur. J. Oper. Res..

[22]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[23]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[24]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[25]  Richard L. Church,et al.  Regional service coverage modeling , 2008, Comput. Oper. Res..

[26]  Dorit S. Hochbaum,et al.  Generalized p-Center problems: Complexity results and approximation algorithms , 1997, Eur. J. Oper. Res..

[27]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[28]  Alan T. Murray,et al.  Heuristics in Spatial Analysis: A Genetic Algorithm for Coverage Maximization , 2009 .

[29]  S HochbaumDorit,et al.  A Best Possible Heuristic for the k-Center Problem , 1985 .

[30]  Yin-Te Tsai,et al.  A Near-Quadratic Algorithm for the Alpha-Connected Two-Center Problem , 2006, J. Inf. Sci. Eng..

[31]  Frank Plastria,et al.  Continuous Covering Location Problems , 2002 .

[32]  Z. Drezner,et al.  The p-center location problem in an area , 1996 .

[33]  Mansoor Davoodi Monfared,et al.  Solving the constrained coverage problem , 2011, Appl. Soft Comput..

[34]  Yin-Te Tsai,et al.  A fast algorithm for the alpha-connected two-center decision problem , 2003, Inf. Process. Lett..

[35]  Alan T. Murray,et al.  Solving the continuous space p-centre problem: planning application issues , 2006 .

[36]  M. Carmen Garrido,et al.  Soft-computing based heuristics for location on networks: The p-median problem , 2011, Appl. Soft Comput..

[37]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[38]  David Eppstein,et al.  Faster construction of planar two-centers , 1997, SODA '97.

[39]  Zhao Xinchao,et al.  Simulated annealing algorithm with adaptive neighborhood , 2011 .

[40]  T. C. Edwin Cheng,et al.  An improved algorithm for the p-center problem on interval graphs with unit lengths , 2007, Comput. Oper. Res..