On deformable models for visual pattern recognition

This paper reviews model-based methods for non-rigid shape recognition. These methods model, match and classify non-rigid shapes, which are generally problematic for conventational algorithms using rigid models. Issues including model representation, optimization criteria formulation, model matching, and classification are examined in detail with the objective to provide interested researchers a roadmap for exploring the field. This paper emphasizes on 2D deformable models. Their potential applications and future research directions, particularly on deformable pattern classification, are discussed.

[1]  Laurent D. Cohen,et al.  A Hybrid Hyperquadric Model for 2-D and 3-D Data Fitting , 1996, Comput. Vis. Image Underst..

[2]  Recognition,et al.  Proceedings of the Second International Conference on Document Analysis and Recognition, October 20-22, 1993, Tsukuba Science City, Japan , 1993 .

[3]  Chia-Ling Tsai,et al.  Maintaining valid topology with active contours: theory and application , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Sven J. Dickinson,et al.  Qualitative tracking of 3-D objects using active contour networks , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Christoph Neukirchen,et al.  Dictionary-based discriminative HMM parameter estimation for continuous speech recognition systems , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[8]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[9]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[10]  Demetri Terzopoulos,et al.  Signal matching through scale space , 1986, International Journal of Computer Vision.

[11]  Carsten Peterson,et al.  Deformable templates, robust statistics, and Hough transforms , 1991, Optics & Photonics.

[12]  Bjørn Olstad,et al.  Encoding of a priori Information in Active Contour Models , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  David B. Cooper,et al.  Maximum Likelihood Estimation of Markov-Process Blob Boundaries in Noisy Images , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  W SeniorAndrew,et al.  An Off-Line Cursive Handwriting Recognition System , 1998 .

[15]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[16]  Kazuaki Iwata,et al.  Modeling of deformable thin parts for their manipulation , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[17]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[18]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[19]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[20]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[21]  Jinah Park,et al.  Deformable models with parameter functions: application to heart-wall modeling , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Alex Pentland,et al.  Closed-form solutions for physically-based shape modeling and recognition , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Nicolas Pérez de la Blanca,et al.  Applying deformable templates for cell image segmentation , 2000, Pattern Recognit..

[24]  Richard Durbin,et al.  An analogue approach to the travelling salesman problem using an elastic net method , 1987, Nature.

[25]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[26]  Max Mignotte,et al.  Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[27]  Jean-Michel Bertille An elastic matching approach applied to digit recognition , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[28]  Anil K. Jain,et al.  Deformable template models: A review , 1998, Signal Process..

[29]  Pascal Fua,et al.  Imposing Hard Constraints on Deformable Models through Optimization in Orthogonal Subspaces , 1997, Comput. Vis. Image Underst..

[30]  Juergen Luettin,et al.  Speechreading using Probabilistic Models , 1997, Comput. Vis. Image Underst..

[31]  Raj Acharya,et al.  Robust snake model , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[32]  Alex Pentland,et al.  Bayesian face recognition using deformable intensity surfaces , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Dit-Yan Yeung,et al.  A Bayesian Framework for Deformable Pattern Recognition With Application to Handwritten Character Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Chil-Woo Lee,et al.  Recognition of human facial expressions using 2-dimensional physical model , 1994, Proceedings of Workshop on Visualization and Machine Vision.

[35]  Pascal Fua,et al.  Initializing snakes [object delineation] , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  David J. Burr,et al.  Elastic Matching of Line Drawings , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  M. B. Skouson,et al.  Template deformation constrained by shape priors , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[38]  Dit-Yan Yeung,et al.  Competitive mixture of deformable models for pattern classification , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Amir A. Amini,et al.  Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI , 1998, IEEE Transactions on Medical Imaging.

[40]  Mutsuo Sano,et al.  A parametric template method and its application to robust matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[41]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Isidore Rigoutsos,et al.  A Bayesian Approach to Model Matching with Geometric Hashing , 1995, Computer Vision and Image Understanding.

[43]  James S. Duncan,et al.  Deformable boundary finding influenced by region homogeneity , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Nicholas Ayache,et al.  Locally affine registration of free-form surfaces , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[46]  Rachid Deriche,et al.  Stereo matching, reconstruction and refinement of 3D curves using deformable contours , 1993, 1993 (4th) International Conference on Computer Vision.

[47]  Marcel Worring,et al.  Parameterized Feasible Boundaries in Gradient Vector Fields , 1993, IPMI.

[48]  Toru Wakahara,et al.  Shape Matching Using LAT and its Application to Handwritten Numeral Recognition , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Dit-Yan Yeung,et al.  Robust deformable matching for character extraction , 1999 .

[50]  Anil K. Jain,et al.  Representation and Recognition of Handwritten Digits Using Deformable Templates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Nicholas Ayache,et al.  Adaptive meshes and nonrigid motion computation , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[52]  Anil K. Jain,et al.  Learning 2D shape models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[53]  D. Burr A dynamic model for image registration , 1981 .

[54]  Tat-Jen Cham,et al.  Stereo coupled active contours , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  D.J. Anderson,et al.  Optimal Estimation of Contour Properties by Cross-Validated Regularization , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Roland T. Chin,et al.  Automated analysis of nerve-cell images using active contour models , 1996, IEEE Trans. Medical Imaging.

[58]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Amir A. Amini,et al.  Quantitative coronary angiography with deformable spline models , 1997, IEEE Transactions on Medical Imaging.

[60]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[61]  F. Dehne,et al.  Hypercube algorithms for parallel processing of pointer-based quadtrees , 1995 .

[62]  Marcel Worring,et al.  Parameterized Feasible Boundaries in Gradient Vector Fields , 1996, Comput. Vis. Image Underst..

[63]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[64]  Alex Pentland,et al.  Matching and recognition using deformable intensity surfaces , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[65]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[66]  David B. Cooper,et al.  Practical Reliable Bayesian Recognition of 2D and 3D Objects Using Implicit Polynomials and Algebraic Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Dimitris N. Metaxas,et al.  Shape Evolution With Structural and Topological Changes Using Blending , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[69]  Zhaohui Huang,et al.  Affine-invariant B-spline moments for curve matching , 1996, IEEE Trans. Image Process..

[70]  Petia Radeva,et al.  A snake for model-based segmentation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[71]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[72]  Timothy F. Cootes,et al.  Automatic Interpretation and Coding of Face Images Using Flexible Models , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  Marie-Odile Berger,et al.  Towards autonomy in active contour models , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[74]  Nicholas Ayache,et al.  Frequency-Based Nonrigid Motion Analysis: Application to Four Dimensional Medical Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[76]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[77]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[78]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Geoffrey E. Hinton,et al.  Using Generative Models for Handwritten Digit Recognition , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Dimitris N. Metaxas,et al.  Blended deformable models , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[81]  Alistair A. Young,et al.  Semi-automatic tracking of myocardial motion in MR tagged images , 1995, IEEE Trans. Medical Imaging.

[82]  Rolf P. Würtz,et al.  Object Recognition Robust Under Translations, Deformations, and Changes in Background , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  Yali Amit,et al.  Graphical Templates for Model Registration , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Bernard Widrow,et al.  The "rubber-mask" technique - I. Pattern measurement and analysis , 1973, Pattern Recognit..

[86]  Dimitris N. Metaxas,et al.  Constrained deformable superquadrics and nonrigid motion tracking , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[87]  Christophe Chesnaud,et al.  Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[88]  Qi Tian,et al.  Discriminant-EM algorithm with application to image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[89]  Andrew Blake,et al.  A probabilistic contour discriminant for object localisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[90]  Lawrence H. Staib,et al.  Boundary finding with correspondence using statistical shape models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[91]  Isabelle Herlin,et al.  A deformable region model using stochastic processes applied to echocardiographic images , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[92]  Marcel Worring,et al.  On multi-feature integration for deformable boundary finding , 1995, Proceedings of IEEE International Conference on Computer Vision.

[93]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  K. Lai Deformable contours: modeling, extraction, detection and classification , 1995 .

[95]  Chandra Kambhamettu,et al.  A new multi-level framework for deformable contour optimization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[96]  Geoffrey E. Hinton,et al.  Instantiating Deformable Models with a Neural Net , 1997, Comput. Vis. Image Underst..

[97]  Dmitry B. Goldgof,et al.  Automatic tracking of SPAMM grid and the estimation of deformation parameters from cardiac MR images , 1994, IEEE Trans. Medical Imaging.

[98]  Takeo Kanade,et al.  Neural network-based face detection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[99]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[100]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[101]  Charles Kervrann,et al.  A hierarchical statistical framework for the segmentation of deformable objects in image sequences , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[102]  Alan L. Yuille,et al.  Feature extraction from faces using deformable templates , 2004, International Journal of Computer Vision.

[103]  Demetri Terzopoulos,et al.  Topologically adaptable snakes , 1995, Proceedings of IEEE International Conference on Computer Vision.

[104]  David N. Levin,et al.  "Brownian Strings": Segmenting Images with Stochastically Deformable Contours , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[105]  Wen-Tsuen Chen,et al.  A hierarchical deformation model for online cursive script recognition , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[106]  Y. Kita,et al.  Elastic-Model Driven Analysis of Several Views of a Deformable Cylindrical Object , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[107]  Anil K. Jain,et al.  Vehicle Segmentation and Classification Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[108]  Arthur R. Pope Model-Based Object Recognition - A Survey of Recent Research , 1994 .

[109]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  Wen-Tsuen Chen,et al.  A stochastic representation of cursive Chinese characters for on-line recognition , 1997, Pattern Recognit..

[111]  Timothy F. Cootes,et al.  Active Shape Models - 'smart snakes' , 1992, BMVC.

[112]  Baba C. Vemuri,et al.  Snake pedals: geometric models with physics-based control , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[113]  Timothy F. Cootes,et al.  Combining point distribution models with shape models based on finite element analysis , 1994, Image Vis. Comput..

[114]  Dimitris N. Metaxas,et al.  Dynamic 3D models with local and global deformations: deformable superquadrics , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[115]  Alok Gupta,et al.  The extruded generalized cylinder: a deformable model for object recovery , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[116]  Trevor Hastie,et al.  Handwritten Digit Recognition via Deformable Prototypes , 1994 .

[117]  Alan L. Yuille,et al.  Determining The Optimal Weights In Multiple Objective Function Optimization , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[118]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[119]  Wen-Tsuen Chen,et al.  A hierarchical deformation model for on-line cursive script recognition , 1994, Pattern Recognit..

[120]  Gareth Funka-Lea,et al.  The use of hybrid models to recover cardiac wall motion in tagged MR images , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[121]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  Timothy F. Cootes,et al.  Locating facial features using genetic algorithms. , 1995 .

[124]  Cheng-Yuan Liou,et al.  Handprinted Character Recognition Based on Spatial Topology Distance Measurement , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[125]  Timothy F. Cootes,et al.  Building and using flexible models incorporating grey-level information , 1993, 1993 (4th) International Conference on Computer Vision.

[126]  Hanqi Zhuang,et al.  On improving eye feature extraction using deformable templates , 1994, Pattern Recognit..

[127]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[128]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[129]  Alex Pentland,et al.  3D modeling and tracking of human lip motions , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[130]  Roland T. Chin,et al.  Deformable contours: modeling and extraction , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[131]  U. Grenander Elements of Pattern Theory , 1996 .

[132]  Günther Ruske,et al.  Discriminative training for continuous speech recognition , 1995, EUROSPEECH.