Wind-induced vibrations of stay cables

Cable-stayed bridges have become the form of choice over the past several decades for bridges in the medium- to long-span range. In some cases, serviceability problems involving large amplitude vibrations of stay cables under certain wind and rain conditions have been observed. This study was conducted to develop a set of consistent design guidelines for mitigation of excessive cable vibrations on cable-stayed bridges. To accomplish this objective, the project team started with a thorough review of existing literature to determine the state of knowledge and identify any gaps that must be filled to enable the formation of a consistent set of design recommendations. This review indicated that while the rain/wind problem is known in sufficient detail, galloping of dry inclined cables was the most critical wind-induced vibration mechanism in need of further experimental research. A series of wind tunnel tests was performed to study this mechanism. Analytical and experimental research was performed to study mitigation methods, covering a range of linear and nonlinear dampers and crossties. The study also included brief studies on live load-induced vibrations and establishing driver/pedestrian comfort criteria. Based on the above, design guidelines for mitigation of wind-induced vibrations of stay cables were developed.