Expression of glycerol-3-phosphate acyltransferase increases non-polar lipid accumulation in Nannochloropsis oceanica

[1]  M. J. Lemieux,et al.  Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. , 2022, Progress in lipid research.

[2]  Sarah D’Adamo,et al.  The nucleolus as a genomic safe harbor for strong gene expression in Nannochloropsis oceanica. , 2021, Molecular plant.

[3]  Daniel R. Figueiredo,et al.  High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica. , 2021, Metabolic engineering.

[4]  B. Rost,et al.  PredictProtein - Predicting Protein Structure and Function for 29 Years , 2021, bioRxiv.

[5]  Sarah D’Adamo,et al.  Optimization of high-throughput lipid screening of the microalga Nannochloropsis oceanica using BODIPY 505/515 , 2020 .

[6]  Q. Hu,et al.  The NanDeSyn Database for Nannochloropsis systems and synthetic biology. , 2020, The Plant journal : for cell and molecular biology.

[7]  C. S. Lin,et al.  TAG pathway engineering via GPAT2 concurrently potentiates abiotic stress tolerance and oleaginicity in Phaeodactylum tricornutum , 2020, Biotechnology for Biofuels.

[8]  S. Reumann,et al.  Development of a constitutive and an auto-inducible high-yield expression system for recombinant protein production in the microalga Nannochloropsis oceanica , 2020, Applied Microbiology and Biotechnology.

[9]  M. Delledonne,et al.  Improved lipid productivity in Nannochloropsis gaditana in nitrogen-replete conditions by selection of pale green mutants , 2020, Biotechnology for Biofuels.

[10]  L. Lackner,et al.  Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology , 2020, The Journal of cell biology.

[11]  Narmada Thanki,et al.  CDD/SPARCLE: the conserved domain database in 2020 , 2019, Nucleic Acids Res..

[12]  Sarah D’Adamo,et al.  Effect of Single and Combined Expression of Lysophosphatidic Acid Acyltransferase, Glycerol-3-Phosphate Acyltransferase, and Diacylglycerol Acyltransferase on Lipid Accumulation and Composition in Neochloris oleoabundans , 2019, Front. Plant Sci..

[13]  R. McIntyre,et al.  Efficacy of omega-3 PUFAs in depression: A meta-analysis , 2019, Translational Psychiatry.

[14]  A. Boretti,et al.  Reassessing the projections of the World Water Development Report , 2019, npj Clean Water.

[15]  B. Finck Glycerolipid intermediates as signaling mediators in physiology and disease , 2019, The FASEB Journal.

[16]  J. Thelen,et al.  The lipid biochemistry of eukaryotic algae. , 2019, Progress in lipid research.

[17]  Y. Guan,et al.  Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion , 2019, Science Advances.

[18]  Wei-dong Yang,et al.  Dual expression of plastidial GPAT1 and LPAT1 regulates triacylglycerol production and the fatty acid profile in Phaeodactylum tricornutum , 2018, Biotechnology for Biofuels.

[19]  S. Lochyński,et al.  Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review , 2018, Nutrients.

[20]  Kan Tanaka,et al.  Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae , 2018, Scientific Reports.

[21]  Zsuzsanna Dosztányi,et al.  IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding , 2018, Nucleic Acids Res..

[22]  E. M. Farré,et al.  Nontransgenic Marker-Free Gene Disruption by an Episomal CRISPR System in the Oleaginous Microalga, Nannochloropsis oceanica CCMP1779. , 2018, ACS synthetic biology.

[23]  E. M. Farré,et al.  A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long‐chain polyunsaturated fatty acid production , 2017, Plant biotechnology journal.

[24]  R. Wijffels,et al.  Continuous versus batch production of lipids in the microalgae Acutodesmus obliquus. , 2017, Bioresource technology.

[25]  Q. Hu,et al.  Metabolic Remodeling of Membrane Glycerolipids in the Microalga Nannochloropsis oceanica under Nitrogen Deprivation , 2017, Front. Mar. Sci..

[26]  D. Tocher,et al.  Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds , 2017, Biotechnology Letters.

[27]  D. Tocher,et al.  Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds , 2017, Biotechnology Letters.

[28]  R. Wijffels,et al.  Towards microalgal triglycerides in the commodity markets , 2017, Biotechnology for Biofuels.

[29]  Henri G. Gerken,et al.  A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica , 2017, Biotechnology for Biofuels.

[30]  Ariel S. Schwartz,et al.  Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator , 2017, Nature Biotechnology.

[31]  Song Xue,et al.  Identification of the role of polar glycerolipids in lipid metabolism and their acyl attribution for TAG accumulation in Nannochloropsis oceanica , 2017 .

[32]  K. Kurokawa,et al.  Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis , 2017, The Plant journal : for cell and molecular biology.

[33]  Rebecca L. Roston,et al.  Correction: Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779 , 2017, PLoS genetics.

[34]  Wei-dong Yang,et al.  Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum , 2017, Biotechnology for Biofuels.

[35]  E. M. Farré,et al.  Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts , 2017, Biotechnology for Biofuels.

[36]  Bo Yu,et al.  CDD/SPARCLE: functional classification of proteins via subfamily domain architectures , 2016, Nucleic Acids Res..

[37]  B. Rost,et al.  TMSEG: Novel prediction of transmembrane helices , 2016, Proteins.

[38]  Maria J. Barbosa,et al.  Towards industrial products from microalgae , 2016 .

[39]  Wei-dong Yang,et al.  A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. , 2016, Journal of biotechnology.

[40]  Jin Liu,et al.  Lipid Production from Nannochloropsis , 2016, Marine drugs.

[41]  R. Wijffels,et al.  Microalgal TAG production strategies: why batch beats repeated-batch , 2016, Biotechnology for Biofuels.

[42]  Wei-dong Yang,et al.  Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum , 2016, Biotechnology for Biofuels.

[43]  T. Beacham,et al.  Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina , 2016 .

[44]  Changcheng Xu,et al.  Cellular Organization of Triacylglycerol Biosynthesis in Microalgae. , 2016, Sub-cellular biochemistry.

[45]  S. Didi-Cohen,et al.  Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production , 2016, Journal of Applied Phycology.

[46]  H. Ohta,et al.  Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii , 2015, Front. Microbiol..

[47]  S. Didi-Cohen,et al.  Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: Overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG , 2015 .

[48]  István Reményi,et al.  CCTOP: a Consensus Constrained TOPology prediction web server , 2015, Nucleic Acids Res..

[49]  R. Garcés,et al.  Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus. , 2015, Phytochemistry.

[50]  U. Maier,et al.  In vivo localization studies in the stramenopile alga Nannochloropsis oceanica. , 2015, Protist.

[51]  David T. Jones,et al.  DISOPRED3: precise disordered region predictions with annotated protein-binding activity , 2014, Bioinform..

[52]  Kang Ning,et al.  Choreography of Transcriptomes and Lipidomes of Nannochloropsis Reveals the Mechanisms of Oil Synthesis in Microalgae[W][OPEN] , 2014, Plant Cell.

[53]  Weiqi Wang,et al.  Nannochloropsis Genomes Reveal Evolution of Microalgal Oleaginous Traits , 2014, PLoS genetics.

[54]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[55]  D. Martens,et al.  Simultaneous growth and neutral lipid accumulation in microalgae. , 2013, Bioresource technology.

[56]  Rebecca L. Roston,et al.  Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779 , 2012, PLoS genetics.

[57]  T. Yoo,et al.  Gamma Linolenic Acid Exerts Anti-Inflammatory and Anti-Fibrotic Effects in Diabetic Nephropathy , 2012, Yonsei medical journal.

[58]  Q. Hu,et al.  Phospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii[C][W] , 2012, Plant Cell.

[59]  C. Benning,et al.  A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins1[W][OA] , 2012, Plant Physiology.

[60]  R. Coleman,et al.  Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. , 2011, Chemical reviews.

[61]  A. Conzelmann,et al.  Topology of 1-Acyl-sn-glycerol-3-phosphate Acyltransferases SLC1 and ALE1 and Related Membrane-bound O-Acyltransferases (MBOATs) of Saccharomyces cerevisiae* , 2011, The Journal of Biological Chemistry.

[62]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[63]  J. Ohlrogge,et al.  Acyl-Lipid Metabolism , 2010, The arabidopsis book.

[64]  T. M. Lewin,et al.  Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. , 2009, Biochimica et biophysica acta.

[65]  David T. Jones,et al.  Transmembrane protein topology prediction using support vector machines , 2009, BMC Bioinformatics.

[66]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[67]  R. Coleman,et al.  Enzymes of triacylglycerol synthesis and their regulation. , 2004, Progress in lipid research.

[68]  N. Baker,et al.  Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – calculation of qP and Fv-/Fm-; without measuring Fo-; , 1997, Photosynthesis Research.

[69]  Yuan-Kun Lee,et al.  Determination of biomass dry weight of marine microalgae , 1997, Journal of Applied Phycology.

[70]  R. Kuroki,et al.  Substrate recognition and selectivity of plant glycerol-3-phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea. , 2004, Acta crystallographica. Section D, Biological crystallography.

[71]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[72]  D. Juretic,et al.  Basic Charge Clusters and Predictions of Membrane Protein Topology , 2002, J. Chem. Inf. Comput. Sci..

[73]  D. Rice,et al.  Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase. , 2001, Structure.

[74]  R. Chapkin,et al.  Importance of Dietary γ-Linolenic Acid in Human Health and Nutrition , 1998 .

[75]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[76]  D. Horrobin Nutritional and medical importance of gamma-linolenic acid. , 1992, Progress in lipid research.

[77]  H. Grüneberg An Analysis of the , 1938 .