Interpolation Using Wavelet Bases

Efficient solutions to regularization problems can be obtained using orthogonal wavelet bases for preconditioning. Good approximate solutions can be obtained in only two or three iterations, with each iteration requiring only O(n) operations and O(n) storage locations. Two- and three-dimensional examples are shown using both synthetic and real range data. >

[1]  W. Eric L. Grimson,et al.  An implementation of a computational theory of visual surface interpolation , 1983, Comput. Vis. Graph. Image Process..

[2]  H. Wilson,et al.  Modified line-element theory for spatial-frequency and width discrimination. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[3]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[4]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  John R. Kender,et al.  Visual Surface Reconstruction Using Sparse Depth Data , 1986, CVPR 1986.

[6]  Olivier D. Faugeras,et al.  Building visual maps by combining noisy stereo measurements , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[8]  Alex Pentland,et al.  A New Sense for Depth of Field , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[10]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Eero P. Simoncelli,et al.  Non-separable extensions of quadrature mirror filters to multiple dimensions , 1990, Proc. IEEE.

[13]  Alex Pentland,et al.  Physically Based Dynamical Models for Image Processing and Recognition , 1990, DAGM-Symposium.

[14]  B. Alpert,et al.  Wavelets for the Fast Solution of Second-Kind Integral Equations , 1990 .

[15]  Richard Szeliski,et al.  Fast Surface Interpolation Using Hierarchical Basis Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Alex Pentland Surface Interpolation Networks , 1993, Neural Computation.