Archeops in-flight performance, data processing, and map making

Aims:Archeops is a balloon-borne experiment inspired by the Planck satellite and its high frequency instrument (HFI). It is designed to measure the cosmic microwave background (CMB) temperature anisotropies at high angular resolution (~12 arcmin) over a large fraction of the sky (around 30%) at 143, 217, 353, and 545 GHz. The Archeops 353 GHz channel consists of three pairs of polarized sensitive bolometers designed to detect the polarized diffuse emission of Galactic dust. Methods: In this paper we present an update of the instrumental setup, as well as the flight performance for the last Archeops flight campaign (February 2002 from Kiruna, Sweden). We also describe the processing and analysis of the Archeops time-ordered data for that campaign, which led to measurement of the CMB anisotropy power spectrum in the multipole range l = 10-700 and to the first measurements of both the polarized emission of dust at large angular scales and its power spectra in the multipole range l = 3-70 Results: We present maps covering approximately 30% of the sky. These maps contain Galactic emission, including the Galactic plane, in the four Archeops channels at 143, 217, 353, and 545 GHz and CMB anisotropies at 143 and 217 GHz. These are one of the first sub-degree-resolution maps in the millimeter and submillimeter ranges of the large angular-scale diffuse Galactic dust emission and CMB temperature anisotropies, respectively.

[1]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[2]  J. Hamilton,et al.  Noise power spectrum estimation and fast map making for CMB experiments , 2003, astro-ph/0307203.

[3]  M. Janssen,et al.  Mapping the Sky with the COBE Differential Microwave Radiometers , 1992 .

[4]  A. Benoȋt,et al.  Dilution refrigerator for space applications with a cryocooler , 1994 .

[5]  Richard J. Davis,et al.  High-sensitivity measurements of the cosmic microwave background power spectrum with the extended Very Small Array , 2004, astro-ph/0402498.

[6]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing Methods and Systematic Error Limits , 2003, astro-ph/0302222.

[7]  J. Cardoso,et al.  Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis , 2002, astro-ph/0211504.

[8]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[9]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[10]  N. Yanagi,et al.  Heat transfer of a large copper plate to liquid helium applicable to large scale superconductors , 1994 .

[11]  A. Murphy,et al.  The Planck High Frequency Instrument, a third generation CMB experiment, and a full sky submillimeter survey , 2003 .

[12]  J. Christensen-Dalsgaard,et al.  Theory of Stellar Pulsation , 1982 .

[13]  The CMB temperature power spectrum from an improved analysis of the Archeops data , 2004, astro-ph/0411633.

[14]  J. Macías-Pérez,et al.  A wavelet analysis of CMB time-ordered data applied to Archeops , 2005, astro-ph/0511200.

[15]  J. Puchalla,et al.  Whole-Disk Observations of Jupiter, Saturn, and Mars in Millimeter/Submillimeter Bands , 1996, astro-ph/9612040.

[16]  S. Masi,et al.  The cosmic microwave background anisotropy power spectrum measured by archeops , 2002, astro-ph/0210305.

[17]  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[18]  O. Dor'e,et al.  MAPCUMBA: A fast iterative multi-grid map-making algorithm for CMB experiments , 2001, astro-ph/0101112.

[19]  J. Beeman,et al.  Modelling and Optimizing of High Sensitivity Semiconducting Thermistors at Low Temperature , 2001 .

[20]  S. Meyer,et al.  Spectra and Sky Maps from the COBE Far Infrared Spectraphotometer (FIRAS) , 1990 .

[21]  S. White THE EVOLUTION OF LARGE SCALE STRUCTURE , 1984 .

[22]  S. WEINTROUB,et al.  A Review of Scientific Instruments , 1932, Nature.

[23]  J. F. Macias-Perez,et al.  ASYMFAST : A method for convolving maps with asymmetric main beams , 2004 .

[24]  B. Wilson,et al.  Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths. , 1995, Applied optics.

[25]  Andrew H. Jaffe,et al.  Simultaneous Estimation of Noise and Signal in Cosmic Microwave Background Experiments , 1999, astro-ph/9909250.

[26]  S. Masi,et al.  Cosmological constraints from archeops , 2002, astro-ph/0210306.

[27]  J. E. Carlstrom,et al.  Degree Angular Scale Interferometer First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum , 2001 .

[28]  J. D. Stolarik,et al.  The Ultraviolet Imaging Telescope - Design and performance , 1992 .

[29]  Cosmic background dipole measurements with the Planck-High Frequency Instrument , 2001, astro-ph/0110650.

[30]  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[31]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[32]  Zouhair Benkhaldoun,et al.  Astronomical site evaluation in the visible and radio range : IAU technical workshop : proceedings of a workshop held at Cadi Ayyad University, Marrakesh, Morocco, 13-17 November 2000 , 2002 .

[33]  C. Dragone,et al.  A first-order treatment of aberrations in Cassegrainian and Gregorian antennas , 1982 .

[34]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[35]  D. Yvon,et al.  Mirage: A new iterative map-making code for CMB experiments , 2005 .

[36]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[37]  J. Aumont,et al.  Temperature and polarization angular power spectra of Galactic dust radiation at 353 GHz as measured by Archeops , 2005 .

[38]  S Masi,et al.  Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG , 2005, astro-ph/0507509.

[39]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[40]  et al,et al.  Archeops: a high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies , 2001 .

[41]  C. Dupraz,et al.  The Infrared and submillimetre sky after COBE , 1992 .

[42]  D. Maclennan Primitive Marriage Customs , 1881, Nature.

[43]  M. Bersanelli,et al.  Optimized in-flight absolute calibration for extended CMB surveys , 2003, astro-ph/0309317.

[44]  J. Mather,et al.  Bolometers: ultimate sensitivity, optimization, and amplifier coupling. , 1984, Applied optics.

[45]  The large-scale anomalous microwave emission revisited by WMAP , 2003, astro-ph/0303335.

[46]  Spectral indications of thermal Sunyaev-Zel'dovich effect in ARCHEOPS and WMAP data , 2005, astro-ph/0506530.

[47]  J. Weiland,et al.  Comparison of the COBE FIRAS and DIRBE Calibrations , 1997, astro-ph/9707192.

[48]  P. Treanor Stellar Evolution , 1951, Nature.

[49]  Federico Nati,et al.  A fast star sensor for balloon payloads , 2003 .

[50]  P. A. R. Ade,et al.  Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the Cosmic Microwave Background from Two New Analyses of BOOMERANG Observations , 2002, astro-ph/0212229.

[51]  S. Marnieros,et al.  Low temperature NbSi thin film thermometers on Silicon Nitride membranes for bolometer applications , 2000 .

[52]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[53]  Charles L. Bennett,et al.  Preliminary results from the COBE differential microwave radiometers - Large angular scale isotropy of the cosmic microwave background , 1991 .

[54]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.