A computer vision model for visual-object-based attention and eye movements

This paper presents a new computational framework for modelling visual-object-based attention and attention-driven eye movements within an integrated system in a biologically inspired approach. Attention operates at multiple levels of visual selection by space, feature, object and group depending on the nature of targets and visual tasks. Attentional shifts and gaze shifts are constructed upon their common process circuits and control mechanisms but also separated from their different function roles, working together to fulfil flexible visual selection tasks in complicated visual environments. The framework integrates the important aspects of human visual attention and eye movements resulting in sophisticated performance in complicated natural scenes. The proposed approach aims at exploring a useful visual selection system for computer vision, especially for usage in cluttered natural visual environments.

[1]  T. A. Kelley,et al.  Cortical mechanisms for shifting and holding visuospatial attention. , 2008, Cerebral cortex.

[2]  Y. Haxhimusa,et al.  Hierarchical Image Partitioning with Dual Graph Contraction 1 , 2003 .

[3]  Kang Chen,et al.  Visual Attention and Eye Movements , 2008 .

[4]  Giulio Sandini,et al.  Object-based Visual Attention: a Model for a Behaving Robot , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[5]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[6]  John K. Tsotsos,et al.  Towards a Biologically Plausible Active Visual Search Model , 2004, WAPCV.

[7]  Eileen Kowler,et al.  Attention and Eye Movements , 2009 .

[8]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[9]  Sang Uk Lee,et al.  Integrated Position Estimation Using Aerial Image Sequences , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Giacomo Rizzolatti,et al.  The Premotor Theory of Attention , 2005 .

[11]  J. Duncan Converging levels of analysis in the cognitive neuroscience of visual attention. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  John T. Serences,et al.  Parietal mechanisms of switching and maintaining attention to locations, objects, and features , 2005 .

[13]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[14]  J. Wolfe,et al.  Fixational Eye Movements Are Not an Index of Covert Attention , 2007, Psychological science.

[15]  A. Zeman Attentional Processing. The Brain's Art of Mindfulness , 1996 .

[16]  Robert B. Fisher,et al.  Object-based visual attention for computer vision , 2003, Artif. Intell..

[17]  B. Draper,et al.  Evaluation of Selective Attention under Similarity Transforms , 2003 .

[18]  Herman Martins Gomes,et al.  Model Learning in Iconic Vision , 2002 .

[19]  R. D. Wright,et al.  Inhibition-of-return at multiple locations in visual space. , 1996, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[20]  G. Rizzolatti,et al.  Space and selective attention , 1994 .

[21]  John K. Tsotsos,et al.  Attending to visual motion , 2005, Comput. Vis. Image Underst..

[22]  Bärbel Mertsching,et al.  Data- and Model-Driven Gaze Control for an Active-Vision System , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  C. L. M. The Psychology of Attention , 1890, Nature.

[24]  Z. Pylyshyn Visual indexes, preconceptual objects, and situated vision , 2001, Cognition.

[25]  Christof Koch,et al.  Analog VLSI Circuits for Attention-Based, Visual Tracking , 1996, NIPS.

[26]  Giorgio Bonmassar,et al.  Space-Variant Fourier Analysis: The Exponential Chirp Transform , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  John K. Tsotsos,et al.  Neurobiology of Attention , 2005 .

[28]  Yaoru Sun,et al.  Hierarchical object-based visual attention for machine vision , 2003 .

[29]  B. Scholl Objects and attention: the state of the art , 2001, Cognition.

[30]  J. Mattingley,et al.  Neurodisruption of selective attention: insights and implications , 2005, Trends in Cognitive Sciences.

[31]  M. Posner,et al.  Neural systems control of spatial orienting. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  A. Weitzenhoffer,et al.  ATTENTION AND EYE MOVEMENTS , 1970, The Journal of nervous and mental disease.

[33]  Jianfeng Feng,et al.  Cue-guided search: a computational model of selective attention , 2005, IEEE Transactions on Neural Networks.

[34]  Ronald A. Rensink The Dynamic Representation of Scenes , 2000 .

[35]  Robert M. McPeek,et al.  Saccades require focal attention and are facilitated by a short-term memory system , 1999, Vision Research.

[36]  Bruce A. Draper,et al.  Evaluation of selective attention under similarity transformations , 2005, Comput. Vis. Image Underst..

[37]  S. Tipper,et al.  Object-based and environment-based inhibition of return of visual attention. , 1994, Journal of experimental psychology. Human perception and performance.

[38]  Martin D. Levine,et al.  Real-Time Attention for Robotic Vision , 1997, Real Time Imaging.

[39]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.