An invariant characterization of pseudo-valuations on a field
暂无分享,去创建一个
This note is concerned with pseudo-valuations on a (commutative) field F. A pseudo-valuation on F† is defined as a real-valued function W on F such that (1) W(x) ≥ 0 for all x∈F and W(0) = 0, but W does not vanish identically on F, (2) W(xy) ≤ W(x) W(y) for all x, y ∈ F, (3) W(x−y) ≤ W(x) + W(y) for all x, y ∈ F. W is non-Archimedean, if it satisfies the ultrametric inequality (3′) W(x−y) ≤ max {W(x), W(y)}.
[1] I. Kaplansky. Topological methods in valuation theory , 1947 .
[2] P. Lorenzen,et al. Abstrakte Begründung der multiplikativen Idealtheorie , 1939 .
[3] K. Mahler. Über Pseudobewertungen. I , 1936 .
[4] D. V. Dantzig. Nombres universels ou $\nu!$-adiques avec une introduction sur l'algèbre topologique , 1936 .
[5] K. Mahler. Über Pseudobewertungen. II , 1936 .