We looked for evidence of changes in lung elastic recoil and of inspiratory muscle fatigue at maximal exercise in seven normal subjects. Esophageal pressure, flow, and volume were measured during spontaneous breathing at increasing levels of cycle exercise to maximum. Total lung capacity (TLC) was determined at rest and immediately before exercise termination using a N2-washout technique. Maximal inspiratory pressure and inspiratory capacity were measured at 1-min intervals. The time course of instantaneous dynamic pressure of respiratory muscles (Pmus) was calculated for the spontaneous breaths immediately preceding exercise termination. TLC volume and lung elastic recoil at TLC were the same at the end of exercise as at rest. Maximum static inspiratory pressures at exercise termination were not reduced. However, mean Pmus of spontaneous breaths at end exercise exceeded 15% of maximum inspiratory pressure in five of the subjects. We conclude that lung elastic recoil is unchanged even at maximal exercise and that, while inspiratory muscles operate within a potentially fatiguing range, the high levels of ventilation observed during maximal exercise are not maintained for a sufficient time to result in mechanical fatigue.