Optimal Genes Selection with a New Multi-objective Evolutional Algorithm Hybriding NSGA-II with EDA

Recent studies on molecular level classification of tissues with DNA microarray technology have produced remarkable results. It is believed that the subtypes of cancer can be distinguished by a set of discriminative genes. To achieve this goal, it not only requires high enough classification accuracy, but also a minimal number of genes as much as possible to lower cost. Meanwhile, the number of samples from different tissues may differ greatly. Therefore, it should also avoid classification bias due to unbalance sample number in different classes. In this paper, we propose a new multi-objective evolutional algorithm (MOEA) framework to select optimal genes, which has both advantages of the non-dominated sorting genetic algorithm II (NSGA-II) and the estimation of distribution algorithm (EDA). Finally, experiment on the data is done, The result shows that our method has good performance.

[1]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[2]  Nir Friedman,et al.  Tissue classification with gene expression profiles. , 2000 .

[3]  Sushmita Mitra,et al.  Multi-objective evolutionary biclustering of gene expression data , 2006, Pattern Recognit..

[4]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[7]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[8]  Peter J. Park,et al.  A Nonparametric Scoring Algorithm for Identifying Informative Genes from Microarray Data , 2000, Pacific Symposium on Biocomputing.

[9]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[10]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.