Geochemical modelling of experimental O2–SO2–CO2 reactions of reservoir, cap-rock, and overlying cores

[1]  C. Ostertag-Henning,et al.  Dissolution kinetics of CO2 and CO2-SO2 mixtures in water and brine at geological storage conditions of 16 MPa and 333 K , 2018, International Journal of Greenhouse Gas Control.

[2]  J. Pearce,et al.  Experimental Determination of Impure CO2 Alteration of Calcite Cemented Cap-Rock, and Long Term Predictions of Cap-Rock Reactivity , 2018, Geosciences.

[3]  Byoung-Young Choi,et al.  Impact of SO2 on Alteration of Reservoir Rock with Ca-Deficient Conditions and Poor Buffering Capacity under a CO2 Geologic Storage Condition , 2018 .

[4]  T. Blach,et al.  Impure CO2 reaction of feldspar, clay, and organic matter rich cap-rocks: Decreases in the fraction of accessible mesopores measured by SANS , 2018 .

[5]  Veerle Cnudde,et al.  Effect of dissolved H2SO4 on the interaction between CO2-rich brine solutions and limestone, sandstone and marl , 2017 .

[6]  C. Ayora,et al.  Experimental and modeling study of the interaction between a crushed marl caprock and CO 2 -rich solutions under different pressure and temperature conditions , 2017 .

[7]  S. Golding,et al.  Mineralogical controls on porosity and water chemistry during O2-SO2-CO2 reaction of CO2 storage reservoir and cap-rock core , 2016 .

[8]  S. Golding,et al.  Reactivity of micas and cap-rock in wet supercritical CO2 with SO2 and O2 at CO2 storage conditions , 2016 .

[9]  J. Soler,et al.  Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions , 2016 .

[10]  S. Sommacal,et al.  A fresh approach to investigating CO2 storage: Experimental CO2-water-rock interactions in a low-salinity reservoir system , 2015 .

[11]  Suzanne D. Golding,et al.  Experimental mineral dissolution in Berea Sandstone reacted with CO2 or SO2 –CO2 in NaCl brine under CO2 sequestration conditions , 2015 .

[12]  U. Schacht,et al.  Characterizing long-term CO2-water-rock reaction pathways to identify tracers of CO2 migration during geological storage in a low-salinity, siliciclastic reservoir system , 2015 .

[13]  D. Kirste,et al.  SO2 impurity impacts on experimental and simulated CO2–water–reservoir rock reactions at carbon storage conditions , 2015 .

[14]  S. Carroll,et al.  Rates of mineral dissolution under CO2 storage conditions , 2015 .

[15]  K. Higgs,et al.  The Pretty Hill Formation as a natural analogue for CO2 storage: An investigation of mineralogical and isotopic changes associated with sandstones exposed to low, intermediate and high CO2 concentrations over geological time , 2015 .

[16]  Young-Shin Jun,et al.  Plagioclase dissolution during CO₂-SO₂ cosequestration: effects of sulfate. , 2015, Environmental science & technology.

[17]  T. Wall,et al.  Oxyfuel CO2 compression: The gas phase reaction of elemental mercury and NOx at high pressure and absorption into nitric acid , 2014 .

[18]  Vincent Lagneau,et al.  CO2 intrusion in freshwater aquifers: Review of geochemical tracers and monitoring tools, classical uses and innovative approaches , 2014 .

[19]  A. T. Owen,et al.  Mineralization of basalts in the CO2-H2O-SO2-O2 system. , 2014, Environmental science & technology.

[20]  J. Black,et al.  Chlorite dissolution rates under CO2 saturated conditions from 50 to 120 °C and 120 to 200 bar CO2 , 2014 .

[21]  A. Navarre‐Sitchler,et al.  Metal release from limestones at high partial-pressures of CO2 , 2014 .

[22]  A. Navarre‐Sitchler,et al.  Metal release from dolomites at high partial-pressures of CO2 , 2013 .

[23]  K. Cantrell,et al.  Effect of oxygen co-injected with carbon dioxide on Gothic shale caprock–CO2–brine interaction during geologic carbon sequestration , 2013 .

[24]  S. Carroll,et al.  Kinetics of chlorite dissolution at elevated temperatures and CO2 conditions , 2013 .

[25]  J. Hodgkinson,et al.  Background research for selection of potential geostorage targets—case studies from the Surat Basin, Queensland , 2013 .

[26]  J. Esterle,et al.  Mineralogical characterisation of a potential reservoir system for CO2 sequestration in the Surat Basin , 2013 .

[27]  Neil Wildgust,et al.  The effect of impurities in oxyfuel flue gas on CO2 storage capacity , 2012 .

[28]  V. Glezakou,et al.  Molecular interactions of SO2 with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study , 2012 .

[29]  J. Erzinger,et al.  On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach , 2012 .

[30]  A. Navarre‐Sitchler,et al.  Supercritical carbon dioxide and sulfur in the Madison Limestone: A natural analog in southwest Wyoming for geologic carbon–sulfur co-sequestration , 2011 .

[31]  E. Ilton,et al.  In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2. , 2011, Environmental science & technology.

[32]  Juliane Kummerow,et al.  Experimental evaluation of the impact of the interactions of CO2‐SO2, brine, and reservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany , 2011 .

[33]  G. Scheffknecht,et al.  CO2 Capture for Fossil Fuel‐Fired Power Plants , 2011 .

[34]  H. Shao,et al.  Effects of salinity and the extent of water on supercritical CO2-induced phlogopite dissolution and secondary mineral formation. , 2011, Environmental science & technology.

[35]  Yoon-Seok Choi,et al.  Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments. , 2010, Environmental science & technology.

[36]  R. Jackson,et al.  Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. , 2010, Environmental science & technology.

[37]  Jiemin Lu,et al.  Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment , 2010 .

[38]  Liange Zheng,et al.  Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana , 2010 .

[39]  Edward J. Anthony,et al.  Emissions of SO2 and NOx during Oxy−Fuel CFB Combustion Tests in a Mini-Circulating Fluidized Bed Combustion Reactor , 2010 .

[40]  R. Korsch,et al.  Mid-Cretaceous uplift and denudation of the Bowen and Surat Basins, eastern Australia: relationship to Tasman Sea rifting from apatite fission-track and vitrinite-reflectance data , 2009 .

[41]  B. Sass,et al.  Reactive transport modeling of CO2 and SO2 injection into deep saline formations and their effect on the hydraulic properties of host rocks , 2009 .

[42]  M. Mølnvik,et al.  Dynamis CO2 quality recommendations , 2008 .

[43]  Edward J. Anthony,et al.  Experimental Study of Oxy-Fuel Combustion and Sulfur Capture in a Mini-CFBC , 2007 .

[44]  Karsten Pruess,et al.  Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a Sandstone Formation , 2007 .

[45]  M. Comarmond,et al.  The kinetics of chlorite dissolution , 2007 .

[46]  Robert J. Rosenbauer,et al.  Ferric iron in sediments as a novel CO2 mineral trap: CO2-SO2 reaction with hematite , 2005 .

[47]  M. Comarmond,et al.  The kinetics of the dissolution of chlorite as a function of pH and at 25°C , 2005 .

[48]  Maxwell N. Watson,et al.  The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstone reservoir , 2004 .

[49]  Yousif K. Kharaka,et al.  A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling , 2004 .

[50]  E. Oelkers,et al.  An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C , 2003 .

[51]  Karsten Pruess,et al.  CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar , 2003 .

[52]  F. Brandt,et al.  Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach , 2003 .

[53]  Zhenhao Duan,et al.  An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar , 2003 .

[54]  A. White Chemical weathering rates of silicate minerals in soils , 1995 .

[55]  S. Sommacal,et al.  A combined geochemical and μCT study on the CO2 reactivity of Surat Basin reservoir and cap-rock cores: Porosity changes, mineral dissolution and fines migration , 2019, International Journal of Greenhouse Gas Control.

[56]  D. Kirste,et al.  Parameterizing Geochemical Models: Do Kinetics of Calcite Matter? , 2017 .

[57]  P. Chiquet,et al.  Geochemical study of the reactivity of a carbonate rock in a geological storage of CO2 : Implications of co-injected gases , 2011 .

[58]  Irina Gaus,et al.  Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks , 2010 .