A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part V Cloud structural properties

Abstract In this fifth of a series of papers describing the extended-time high cloud observation program from the University of Utah Facility for Atmospheric Remote Sensing, the structural properties of cirrus clouds over Salt Lake City, Utah, are examined. Wavelet analysis is applied to a 10-yr record of cirrus cloud ruby (0.694 μm) lidar backscatter data as a function of cloud height in order to study the presence of periodic cloud structures, such as the signatures of Kelvin–Helmholtz instabilities, cirrus mammata, and uncinus cells (all with length scales of ∼1–10 km), as well as mesoscale cloud organizations generally believed to be induced by gravity waves. About 8.4% of the data display structures after passing a 95% confidence level test, but an 80% confidence level, which seems better able to resolve structures spread over long periods, yields 16.4%. The amount of identified cloud structures does not change significantly with length scale from 0.2 to 200 km, although the frequency of mesoscale cl...

[1]  Qiang Fu,et al.  High-Cloud Horizontal Inhomogeneity and Solar Albedo Bias , 2002 .

[2]  K. Sassen,et al.  The 27-28 October 1986 FIRE IFO cirrus case study - A five lidar overview of cloud structure and evolution , 1990 .

[3]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[4]  Kenneth Sassen,et al.  Lidar Cloud Research , 1995 .

[5]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[6]  H. Barker A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer , 1996 .

[7]  K. Liou,et al.  Radiative Transfer in Cirrus Clouds. Part IV: On Cloud Geometry, Inhomogeneity, and Absorption , 1996 .

[8]  Harshvardhan,et al.  Comments on ``The Parameterization of Radiation for Numerical Weather Prediction and Climate Models'' , 1985 .

[9]  K. Sassen,et al.  Cirrus Mammatus Properties Derived from an Extended Remote Sensing Dataset , 2006 .

[10]  K. Sassen,et al.  Mesoscale and microscale structure of cirrus clouds - Three case studies , 1989 .

[11]  Roger Davies,et al.  Effects of Cloud Heterogeneities on Shortwave Radiation: Comparison of Cloud-Top Variability and Internal Heterogeneity , 1999 .

[12]  Kenneth Sassen,et al.  Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors , 2001 .

[13]  Kenneth Sassen,et al.  Cirrus Cloud Simulation Using Explicit Microphysics and Radiation. Part II: Microphysics, Vapor and Ice Mass Budgets, and Optical and Radiative Properties , 1998 .

[14]  Jennifer M. Comstock,et al.  Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements , 2001 .

[15]  Daniel S. Wilks,et al.  Statistical Methods in the Atmospheric Sciences: An Introduction , 1995 .

[16]  Donald P. Percival,et al.  On estimation of the wavelet variance , 1995 .

[17]  A. Heymsfield Cirrus Uncinus Generating Cells and the Evolution of Cirriform Clouds. Part II: The Structure and Circulations of the Cirrus Uncinus Generating Head , 1975 .

[18]  F. Ludlam The forms of ice clouds: II , 1948 .

[19]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[20]  D. Wylie,et al.  The 27-28 October 1986 FIRE cirrus case study: Meteorology and clouds , 1990 .

[21]  Kenneth Sassen,et al.  Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays. , 2003, Applied optics.

[22]  William L. Smith,et al.  The 27–28 October 1986 FIRE IFO Cirrus Case Study: In Situ Observations of Radiation and Dynamic Properties of a Cirrus Cloud Layer , 1990 .

[23]  M. Alexander,et al.  Gravity wave dynamics and effects in the middle atmosphere , 2003 .

[24]  Robert Sharman,et al.  Observations and Numerical Simulations of Inertia–Gravity Waves and Shearing Instabilities in the Vicinity of a Jet Stream , 2004 .

[25]  Samantha A. Smith,et al.  Analysis of Aircraft, Radiosonde, and Radar Observations in Cirrus Clouds Observed during FIRE II: The Interactions between Environmental Structure, Turbulence, and Cloud Microphysical Properties , 2001 .

[26]  Likun Wang Midlatitude Cirrus Cloud Structural Properties Analyzed From The Extended Facility For Atmospheric Remote Sensing Dataset , 2004 .

[27]  J. M. Mitchell,et al.  On the Power Spectrum of “Red Noise” , 1963 .

[28]  Geary K. Schwemmer,et al.  Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave , 1992 .

[29]  G. D. Nastrom,et al.  Sources of Mesoscale Variability of Gravity Waves. Part I: Topographic Excitation , 1992 .

[30]  Gerald G. Mace,et al.  Cloud and Aerosol Research Capabilities at FARS: The Facility for Atmospheric Remote Sensing. , 2001 .

[31]  S. Koch,et al.  The Synoptic Setting and Possible Energy Sources for Mesoscale Wave Disturbances , 1987 .

[32]  K. Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties , 2001 .

[33]  T. Dunkerton Shear Instability of Internal Inertia-Gravity Waves , 1997 .

[34]  S. A. Smith,et al.  Wavelet analysis of turbulence in cirrus clouds , 1997 .

[35]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[36]  Robert F. Cahalan,et al.  The albedo of fractal stratocumulus clouds , 1994 .

[37]  D. Starr,et al.  Dynamical Structure and Turbulence in Cirrus Clouds: Aircraft Observations during FIRE , 1995 .

[38]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[39]  S. W. Bowen,et al.  Wavelet analysis of dynamical processes in cirrus , 1998 .

[40]  M. Er,et al.  Wavelet spectrogram of noisy signals , 1995 .

[41]  E. Eloranta,et al.  The 27-28 October 1986 FIRE IFO cirrus case study : cloud optical properties determined by high spectral resolution lidar , 1990 .

[42]  G. Teschke,et al.  Extraction and Analysis of Structural Features in Cloud Radar and Lidar Data Using Wavelet Based Methods , 2002 .