A hybrid simplex genetic algorithm for estimating geoacoustic parameters using matched-field inversion

Matched-fieId inversion (MFI) undertakes to estimate the geometric and geoacoustic parameters in an ocean acoustic scenario by matching acoustic field data recorded at hydrophone array with numerical calculations of the field. The model which provides the best fit to the data is the estimate of the actual experimental scenario. MFI provides a comparatively inexpensive method for estimating ocean bottom parameters over an extensive area. The basic components of the inversion process are a sound propagation model and matching (minimization) algorithm. Since a typical MFI problem requires a large number of computationally intensive sound propagation calculations, both of these components have to be efficient. In this study, a hybrid inversion algorithm which uses a parabolic equation propagation model and combines the downhill simplex algorithm with genetic algorithms is introduced. The algorithm is demonstrated on synthetic range-dependent shallow-water data generated using the parabolic equation propagation model. The performance for estimating the model parameters is compared for realistic signal-to-noise ratios in the synthetic data.

[1]  Peter Gerstoft,et al.  Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach , 1995 .

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  W A Kuperman,et al.  Focalization: environmental focusing and source localization. , 1991, The Journal of the Acoustical Society of America.

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[6]  R. J. Cederberg,et al.  Application of an improved self-starter to geoacoustic inversion , 1997 .

[7]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[8]  Pengcheng Liu,et al.  Non-linear multiparameter inversion using a hybrid global search algorithm: applications in reflection seismology , 1995 .

[9]  Michael D. Collins,et al.  Efficient navigation of parameter landscapes , 1994 .

[10]  John M. Ozard,et al.  Estimation of Geoacoustic Parameters from Narrowband Data Using a Search-Optimization Technique , 1998 .

[11]  Henrik Schmidt,et al.  Nonlinear inversion for ocean‐bottom properties , 1992 .

[12]  S. Deming,et al.  Selection and preprocessing of factors for simplex optimization , 1974 .

[13]  William H. Press,et al.  Numerical recipes , 1990 .

[14]  N. R. Chapman,et al.  Matched field inversion for geoacoustic model parameters using adaptive simulated annealing , 1993 .

[15]  N. Ross Chapman,et al.  Head Wave Data Inversion for Geoacoustic Parameters of the Ocean Bottom off Vancouver Island , 1998 .

[16]  Henrik Schmidt,et al.  Parameter Estimation Theory Bounds and the Accuracy of Full Field Inversions , 1995 .

[17]  Mrinal K. Sen,et al.  Hybrid optimization methods for geophysical inversion , 1997 .

[18]  Stan E. Dosso,et al.  GEOACOUSTIC INVERSION VIA LOCAL, GLOBAL, AND HYBRID ALGORITHMS , 1999 .

[19]  M. D. Collins A split‐step Padé solution for the parabolic equation method , 1993 .

[20]  David B. Fogel,et al.  System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[21]  A. Tolstoy,et al.  Matched Field Processing for Underwater Acoustics , 1992 .

[22]  Stan E. Dosso,et al.  Estimation of ocean-bottom properties by matched-field inversion of acoustic field data , 1993 .