Epidemiological cut‐off values for itraconazole and ravuconazole for Madurella mycetomatis, the most common causative agent of mycetoma

Eumycetoma is a neglected tropical disease. It is a chronic inflammatory subcutaneous infection characterised by painless swellings which produce grains. It is currently treated with a combination of itraconazole and surgery. In an ongoing clinical study, the efficacy of fosravuconazole, the prodrug of ravuconazole, is being investigated. For both itraconazole and ravuconazole, no clinical breakpoints or epidemiological cut‐off values (ECV) to guide treatment are currently available.

[1]  S. de Hoog,et al.  A Short-Tandem-Repeat Assay (MmySTR) for Studying Genetic Variation in Madurella mycetomatis , 2020, Journal of Clinical Microbiology.

[2]  J. Guinea Updated EUCAST Clinical Breakpoints against Aspergillus, Implications for the Clinical Microbiology Laboratory , 2020, Journal of fungi.

[3]  M. A. Mohamed,et al.  Madurella mycetomatis causing eumycetoma medical treatment: The challenges and prospects , 2020, PLoS Neglected Tropical Diseases.

[4]  P. Hamal,et al.  How to: interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). , 2020, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[5]  S. Smit,et al.  The development of a novel diagnostic PCR for Madurella mycetomatis using a comparative genome approach , 2020, bioRxiv.

[6]  G. S. de Hoog,et al.  Diagnostic implications of mycetoma derived from Madurella pseudomycetomatis isolates from Mexico , 2020, Journal of the European Academy of Dermatology and Venereology : JEADV.

[7]  A. Verbon,et al.  Madurella mycetomatis, the main causative agent of eumycetoma, is highly susceptible to olorofim , 2020, The Journal of antimicrobial chemotherapy.

[8]  J. Guarro,et al.  Azole resistance mechanisms in Aspergillus: update and recent advances , 2020 .

[9]  J. Frisvad,et al.  cyp51A Mutations, Extrolite Profiles, and Antifungal Susceptibility in Clinical and Environmental Isolates of the Aspergillus viridinutans Species Complex , 2019, Antimicrobial Agents and Chemotherapy.

[10]  S. Kelly,et al.  Mutations in hmg1, Challenging the Paradigm of Clinical Triazole Resistance in Aspergillus fumigatus , 2019, mBio.

[11]  A. Fahal,et al.  VNTR confirms the heterogeneity of Madurella mycetomatis and is a promising typing tool for this mycetoma causing agent. , 2018, Medical mycology.

[12]  O. Kurzai,et al.  Azole-induced cell wall carbohydrate patches kill Aspergillus fumigatus , 2018, Nature Communications.

[13]  A. Fahal,et al.  Drug therapy for Mycetoma , 2018, Cochrane Database of Systematic Reviews.

[14]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[15]  A. Fahal,et al.  Closing the mycetoma knowledge gap. , 2018, Medical mycology.

[16]  J. Guarro,et al.  Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods , 2017, Antimicrobial Agents and Chemotherapy.

[17]  E. Berkow,et al.  Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species , 2017, Frontiers in microbiology.

[18]  Ling Lu,et al.  Screening and Characterization of a Non-cyp51A Mutation in an Aspergillus fumigatus cox10 Strain Conferring Azole Resistance , 2016, Antimicrobial Agents and Chemotherapy.

[19]  G. Goldman,et al.  Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi , 2016, Front. Microbiol..

[20]  J. Turnidge,et al.  The role of epidemiological cutoff values (ECVs/ECOFFs) in antifungal susceptibility testing and interpretation for uncommon yeasts and moulds. , 2016, Revista iberoamericana de micologia.

[21]  M. Goodfellow,et al.  Mycetoma: a unique neglected tropical disease. , 2016, The Lancet. Infectious diseases.

[22]  J. Turnidge,et al.  Multicenter Study of Epidemiological Cutoff Values and Detection of Resistance in Candida spp. to Anidulafungin, Caspofungin, and Micafungin Using the Sensititre YeastOne Colorimetric Method , 2015, Antimicrobial Agents and Chemotherapy.

[23]  G. S. de Hoog,et al.  Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma , 2015, Journal of Clinical Microbiology.

[24]  Wendy Kloezen,et al.  A Madurella mycetomatis Grain Model in Galleria mellonella Larvae , 2015, PLoS neglected tropical diseases.

[25]  L. Cowen,et al.  Mechanisms of Antifungal Drug Resistance. , 2015, Cold Spring Harbor perspectives in medicine.

[26]  G. S. de Hoog,et al.  In Vitro Interaction of Currently Used Azoles with Terbinafine against Madurella mycetomatis , 2014, Antimicrobial Agents and Chemotherapy.

[27]  D. Stevens,et al.  Revision of agents of black-grain eumycetoma in the order Pleosporales , 2014, Persoonia.

[28]  M. Goodfellow,et al.  Merits and Pitfalls of Currently Used Diagnostic Tools in Mycetoma , 2014, PLoS neglected tropical diseases.

[29]  G. S. de Hoog,et al.  Madurella mycetomatis Is Highly Susceptible to Ravuconazole , 2014, PLoS neglected tropical diseases.

[30]  M. Bougnoux,et al.  Azole resistant Aspergillus fumigatus: an emerging problem. , 2013, Medecine et maladies infectieuses.

[31]  J. Pemán,et al.  Antifungal Susceptibility Testing of Filamentous Fungi , 2012, Current Fungal Infection Reports.

[32]  E. Zijlstra,et al.  The safety and efficacy of itraconazole for the treatment of patients with eumycetoma due to Madurella mycetomatis. , 2011, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[33]  P. Escribano,et al.  Aspergillus fumigatus Strains with Mutations in the cyp51A Gene Do Not Always Show Phenotypic Resistance to Itraconazole, Voriconazole, or Posaconazole , 2011, Antimicrobial Agents and Chemotherapy.

[34]  Gert Vriend,et al.  Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces , 2010, BMC Bioinformatics.

[35]  G Kahlmeter,et al.  Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. , 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[36]  A. van Belkum,et al.  In Vitro Susceptibilities of Madurella mycetomatis to Itraconazole and Amphotericin B Assessed by a Modified NCCLS Method and a Viability-Based 2,3-Bis(2-Methoxy-4-Nitro-5- Sulfophenyl)-5-[(Phenylamino)Carbonyl]-2H- Tetrazolium Hydroxide (XTT) Assay , 2004, Antimicrobial Agents and Chemotherapy.

[37]  M. Ghannoum,et al.  Antifungal Agents: Mode of Action, Mechanisms of Resistance, and Correlation of These Mechanisms with Bacterial Resistance , 1999, Clinical Microbiology Reviews.