A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems

A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations is presented for the analysis of free surface flows, moving spatial configurations and deforming fluid-structure interfaces. The variational equation is based on the time discontinuous Galerkin method employing the physical entropy variables. The space-time elements are oriented in time to accommodate the spatial deformations. If the elements are oriented along the particle paths, the formulation is Lagrangian and if they are fixed in time, it is Eulerian. Consequently this formulation is analogous to the arbitrary Lagrangian-Eulerian (ALE) technique. A novel mesh rezoning strategy is presented to orient the elements in time and adapt the fluid mesh to the changing spatial configuration. Numerical results are presented to show the performance of the method.

[1]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[2]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[3]  Michel Fortin,et al.  Finite element simulation of two- and three-dimensional free surface flows , 1991 .

[4]  L. G. Leal,et al.  Further experiments on steady separated flows past bluff objects , 1968, Journal of Fluid Mechanics.

[5]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[6]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[7]  T. Hughes,et al.  A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis , 1989 .

[8]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[9]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[10]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[11]  A. S. Grove,et al.  An experimental investigation of the steady separated flow past a circular cylinder , 1964, Journal of Fluid Mechanics.

[12]  M. Kawahara,et al.  Arbitrary Lagrangian–Eulerianc finite element method for unsteady, convective, incompressible viscous free surface fluid flow , 1987 .

[13]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[14]  Satya N. Atluri,et al.  Computational nonlinear mechanics in aerospace engineering , 1992 .

[15]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[16]  Thomas J. R. Hughes,et al.  Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations†‡ , 1987 .

[17]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[18]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[19]  Peter Hansbo,et al.  A velocity pressure streamline diffusion finite element method for Navier-Stokes equations , 1990 .

[20]  Thomas J. R. Hughes,et al.  Symmetrization of conservation laws with entropy for high-temperature hypersonic computations , 1990 .

[21]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[22]  Peter Hansbo,et al.  The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations , 1992 .

[23]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[24]  Marek Behr,et al.  Finite element solution strategies for large-scale flow simulations☆ , 1994 .

[25]  J. G. Kennedy,et al.  Computation of incompressible flows with implicit finite element implementations on the Connection Machine , 1993 .

[26]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[27]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[28]  Ted Belytschko,et al.  Quasi-Eulerian Finite Element Formulation for Fluid-Structure Interaction , 1980 .

[29]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[30]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[31]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua , 1988 .

[32]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[33]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[34]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[35]  D. C. Ma,et al.  Coupling effect between liquid sloshing and flexible fluid-filled systems , 1982 .

[36]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian methods for materials with memory and friction , 1988 .

[37]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[38]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[39]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[40]  Thomas J. R. Hughes,et al.  Fast projection algorithm for unstructured meshes , 1992 .

[41]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[42]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[43]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[44]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows involving moving boundaries and interfaces☆ , 1993 .

[45]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[46]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[47]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[48]  T. Hughes,et al.  Iterative finite element solutions in nonlinear solid mechanics , 1998 .