Autopolyploidy in angiosperms: Have we grossly underestimated the number of species?

Many species comprise multiple cytotypes that represent autopolyploids, or presumed autopolyploids, of the basic diploid cytotype. However, rarely has an autopolyploid been formally named and considered to represent a species distinct from its diploid progenitor (Zea diploperennis and Z. perennis represent a rare example). The major reasons why autopolyploids have not been named as distinct species are: (1) tradition of including multiple cytotypes in a single named species; and (2) tradition and convenience of adhering to a broad morphology-based taxonomic (or phenetic) species concept. As a result, plant biologists have underrepresented the distinct biological entities that actually exist in nature. Although it may seem "practical" to include morphologically highly similar cytotypes in one species, this practice obscures insights into evolution and speciation and hinders conservation. However, we do not suggest that all cytotypes should be named; each case must be carefully considered. A number of species comprising multiple cytotypes have been thoroughly investigated. Drawing on the literature, as well as our own experience with several autopolyploids (Tolmiea menziesii, Galax urceolata, Chamerion angustifolium, Heuchera grossulariifolia, Vaccinium corymbosum), we reassess the traditional view of plant autopolyploids as mere cytotypes. When considered carefully, many "unnamed" autopolyploids fulfill the requirements of multiple species concepts, including the biological, taxonomic, diagnosability, apomorphic, and evolutionary species concepts. Compared to the diploid parent, the autopolyploids noted above possess distinct geographic ranges, can be distinguished morphologically, and are largely reproductively isolated (via a diversity of mechanisms including reproductive and ecological isolation). These five autopolyploids (and probably many others) represent distinct evolutionary lineages; we therefore suggest that they be considered distinct species and also provide a system for naming them.

[1]  O. Paun,et al.  The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. , 2006, The New phytologist.

[2]  S. Via REPRODUCTIVE ISOLATION BETWEEN SYMPATRIC RACES OF PEA APHIDS. I. GENE FLOW RESTRICTION AND HABITAT CHOICE , 1999, Evolution; international journal of organic evolution.

[3]  A. M. Lutz,et al.  A PRELIMINARY NOTE ON THE CHROMOSOMES OF OEligNOTHERA LAMARCKIANA AND ONE OF ITS MUTANTS, O. GIGAS. , 1907, Science.

[4]  D. E. Soltis Autopolyploidy in Tolmiea menziesii (Saxifragaceae). , 1984 .

[5]  D. Levin The Origin, Expansion and Demize of Plant Species , 2001, Heredity.

[6]  J. Hunziker,et al.  Isozymes in Larrea divaricata and Larrea tridentata (Zygophyllaceae): A study of two amphitropical vicariants and autopolyploidy , 1997, Genetica.

[7]  W. Lewis Polyploidy in species populations. , 1979, Basic life sciences.

[8]  Inger Greve Alsos,et al.  Polyploidy in arctic plants , 2004 .

[9]  Rudolf Meier,et al.  Species concepts and phylogenetic theory : a debate , 2000 .

[10]  Loren H. Rieseberg,et al.  AUTOPOLYPLOIDY IN TOLMIEA MENZIESII (SAXIFRAGACEAE): GENETIC INSIGHTS FROM ENZYME ELECTROPHORESIS' , 1986 .

[11]  M. Ownbey,et al.  CYTOPLASMIC INHERITANCE AND RECIPROCAL AMPHIPLOIDY IN TRAGOPOGON , 1953 .

[12]  Á. Löve THE BIOLOGICAL SPECIES CONCEPT AND ITS EVOLUTIONARY STRUCTURE , 1964 .

[13]  E. Small,et al.  AN EXAMPLE OF PARALLEL EVOLUTION IN EPILOBIUM (ONAGRACEAE) , 1971, Evolution; international journal of organic evolution.

[14]  D. Soltis,et al.  Ribosomal RNA gene variation in diploid and tetraploid Tolmiea menziesii , 1987 .

[15]  W. H. Camp The North American blueberries with notes on other groups of vacciniaceae , 1945, Brittonia.

[16]  James C. Hickman,et al.  The Jepson Manual: Higher Plants of California , 1993 .

[17]  Robert A. Wilson Species: New Interdisciplinary Essays , 1999 .

[18]  G. Ledyard Stebbins,et al.  Variation and Evolution in Plants , 1951 .

[19]  F. Felber Establishment of a tetraploid cytotype in a diploid population: Effect of relative fitness of the cytotypes , 1991 .

[20]  D. Soltis,et al.  Flavonoid chemistry of diploid and tetraploid cytotypes of Tolmiea menziesii (Saxifragaceae) , 1986 .

[21]  J. Timberlake,et al.  How Taxonomists Can Bridge the Gap Between Taxonomy and Conservation Science , 2003 .

[22]  E. Wiley,et al.  The Evolutionary Species Concept Reconsidered , 1978 .

[23]  J. N. Thompson,et al.  PLANT POLYPLOIDY AND POLLINATION: FLORAL TRAITS AND INSECT VISITS TO DIPLOID AND TETRAPLOID HEUCHERA GROSSULARIIFOLIA , 1999, Evolution; international journal of organic evolution.

[24]  H. Vries,et al.  Species and Varieties, Their Origin by Mutation , 1905 .

[25]  D. Schemske,et al.  PATHWAYS, MECHANISMS, AND RATES OF POLYPLOID FORMATION IN FLOWERING PLANTS , 1998 .

[26]  M. Donoghue,et al.  PHYLOGENETIC SYSTEMATICS AND THE SPECIES PROBLEM , 1988, Cladistics : the international journal of the Willi Hennig Society.

[27]  L. Rieseberg,et al.  Are many plant species paraphyletic , 1994 .

[28]  Fyodor A. Kondrashov,et al.  Interactions among quantitative traits in the course of sympatric speciation , 1999, Nature.

[29]  Á. Löve THE EVOLUTIONARY SIGNIFICANCE OF DISJUNCTIONS , 1967 .

[30]  B. Mishler The Morphological, Developmental, and Phylogenetic Basis of Species Concepts in Bryophytes , 1985 .

[31]  B. Husband,et al.  Population cytotype structure in the polyploid Galax urceolata (Diapensiaceae) , 1999, Heredity.

[32]  T. Stuessy,et al.  Infraspecific genetic variation in Biscutella laevigata (Brassicaceae): new focus on Irene Manton's hypothesis , 2002, Plant Systematics and Evolution.

[33]  Y. Kuwada Maiosis in the Pollen Mother Cells of Zea Mays L. , 1911 .

[34]  J. T. Baldwin GALAX: THE GENUS AND ITS CHROMOSOMES , 1941 .

[35]  M. Bennett,et al.  Perspectives on polyploidy in plants – ancient and neo , 2004 .

[36]  N. Vorsa,et al.  Blueberries and Cranberries , 2008 .

[37]  D. Wagner,et al.  Plant Polyploidy and Insect/Plant Interactions , 1997, The American Naturalist.

[38]  D. Soltis,et al.  The role of genetic and genomic attributes in the success of polyploids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Soltis,et al.  Electrophoretic evidence for tetrasomic segregation in Tolmiea menziesii (Saxifragaceae) , 1988, Heredity.

[40]  J. Hancock,et al.  Tetrasomic inheritance of isoenzyme markers in the highbush blueberry, Vaccinium corymbosum L.1 , 1989, Heredity.

[41]  Peter C. Hoch,et al.  A Phylogenetic Analysis of Epilobium (Onagraceae) Based on Nuclear Ribosomal DNA Sequences , 1994 .

[42]  N. Vorsa,et al.  The origin of polyploids via 2n gametes in Vaccinium section Cyanococcus , 1991, Euphytica.

[43]  D. Levin,et al.  Ecological Constraints on the Establishment of a Novel Polyploid in Competition with Its Diploid Progenitor , 1984, The American Naturalist.

[44]  H. G. Baker,et al.  Differentiation of populations. , 1969, Science.

[45]  Vander Kloet The genus Vaccinium in North America. , 1988 .

[46]  L. Rieseberg,et al.  The nature of plant species , 2006, Nature.

[47]  D. Soltis,et al.  Tolmiea diplomenziesii: A new species from the Pacific Northwest and the diploid sister taxon of the autotetraploid T. menziesii (Saxifragaceae) , 2007, Brittonia.

[48]  D. Soltis,et al.  GENETIC CONSEQUENCES OF AUTOPOLYPLOIDY IN TOLMIEA (SAXIFRAGACEAE) , 1989, Evolution; international journal of organic evolution.

[49]  Joel Cracraft,et al.  Species Concepts and Speciation Analysis , 1983 .

[50]  D. Schemske,et al.  UNDERSTANDING THE ORIGIN OF SPECIES1 , 2000 .

[51]  S. Via,et al.  The Genetic Architecture of Ecological Specialization: Correlated Gene Effects on Host Use and Habitat Choice in Pea Aphids , 2002, The American Naturalist.

[52]  Jerrold I. Davis Evolution, evidence, and the role of species concepts in phylogenetics , 1997 .

[53]  Nicolas Salamin,et al.  Sympatric speciation in palms on an oceanic island , 2006, Nature.

[54]  Anthocyanin content in diploid and tetraploid cytotypes of Tolmiea menziesii (Saxifragaceae) , 1986 .

[55]  J. Hancock,et al.  Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae). , 1998, American journal of botany.

[56]  D. Udovic Frequency-Dependent Selection, Disruptive Selection, and the Evolution of Reproductive Isolation , 1980, The American Naturalist.

[57]  J. López‐Pujol,et al.  Allozyme diversity in the tetraploid endemic Thymus loscosii (Lamiaceae). , 2004, Annals of botany.

[58]  Ulf Dieckmann,et al.  Evolutionary Branching and Sympatric Speciation Caused by Different Types of Ecological Interactions , 2000, The American Naturalist.

[59]  R. Gornall,et al.  Cytogenetic evidence for autopolyploidy in Parnassia palustris. , 1996, The New phytologist.

[60]  G. Nesom Galax (Diapensiaceae): Geographic Variation in Chromosome Number , 1983 .

[61]  J. Feder,et al.  Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella , 2000, Nature.

[62]  S. Via The Ecological Genetics of Speciation , 2002, The American Naturalist.

[63]  B. Husband The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations , 2004 .

[64]  F. Ehrendorfer,et al.  Allozyme polymorphism in diploid and polyploid populations of Galium , 1990, Heredity.

[65]  L. Borgen,et al.  Parnassia palustris : A genetically diverse species in Scandinavia , 2003 .

[66]  Pamela S. Soltis,et al.  Molecular Systematics and the Conservation of Rare Species , 1999 .

[67]  B. Birren,et al.  Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae , 2004, Nature.

[68]  B. Gaut,et al.  Sequence diversity in the tetraploid Zea perennis and the closely related diploid Z. diploperennis: insights from four nuclear loci. , 2001, Genetics.

[69]  D. Schemske,et al.  NEOPOLYPLOIDY IN FLOWERING PLANTS , 2002 .

[70]  Bentley Glass,et al.  Experimental Studies on the Nature of Species. II. Plant Evolution Through Amphiploidy and Autoploidy, with Examples from the Madiinae. Carnegie Institution of Washington Publication 564. Jens Clausen , David D. Keck , William M. Hiesey , 1945 .

[71]  D. Soltis,et al.  Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia , 1999 .

[72]  D. Soltis,et al.  Biological relevance of polyploidy : ecology to genomics , 2004 .

[73]  M. King Species Evolution: The Role of Chromosome Change , 1993 .

[74]  Bao Liu,et al.  Epigenetic phenomena and the evolution of plant allopolyploids. , 2003, Molecular phylogenetics and evolution.

[75]  K. Nixon,et al.  AN AMPLIFICATION OF THE PHYLOGENETIC SPECIES CONCEPT , 1990 .

[76]  J. Thompson,et al.  Plant polyploidy and non-uniform effects on insect herbivores , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  Alisha K Holloway,et al.  Polyploids with Different Origins and Ancestors Form a Single Sexual Polyploid Species , 2006, The American Naturalist.

[78]  D. Levin Polyploidy and Novelty in Flowering Plants , 1983, The American Naturalist.

[79]  G. Turner,et al.  A model of sympatric speciation by sexual selection , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  T. Mosquin EVIDENCE FOR AUTOPOLYPLOIDY IN EPILOBIUM ANGUSTIFOLIUM (ONAGRACEAE) , 1967, Evolution; international journal of organic evolution.

[81]  B. Husband,et al.  Habitat Differentiation between Diploid and Tetraploid Galax urceolata (Diapensiaceae) , 2003, International Journal of Plant Sciences.

[82]  G. Ledyard Stebbins,et al.  Chromosomal evolution in higher plants , 1971 .

[83]  R. B. Payne,et al.  Speciation by host switch in brood parasitic indigobirds , 2003, Nature.

[84]  J. Doebley,et al.  Zea diploperennis (Gramineae): A New Teosinte from Mexico , 1979, Science.

[85]  G. Stebbins Polyploidy, hybridization, and the invasion of new habitats. , 1985 .

[86]  E. Mayr The Growth of Biological Thought: Diversity, Evolution, and Inheritance , 1983 .

[87]  Robert R. Sokal,et al.  The Biological Species Concept: A Critical Evaluation , 1970, The American Naturalist.

[88]  Vincent Colot,et al.  Understanding mechanisms of novel gene expression in polyploids. , 2003, Trends in genetics : TIG.

[89]  D. Soltis,et al.  CHLOROPLAST-DNA AND ALLOZYMIC VARIATION IN DIPLOID AND AUTOTETRAPLOID HEUCHERA GROSSULARIIFOLIA (SAXIFRAGACEAE). , 1990, American journal of botany.

[90]  N. Vorsa,et al.  Allozyme evidence for genetic autopolyploidy and high genetic diversity in tetraploid cranberry, Vaccinium oxycoccos (Ericaceae). , 2000, American journal of botany.

[91]  Stebbins Gl Types of polyploids; their classification and significance. , 1947 .

[92]  Brad A. Chapman,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2003, Nature.

[93]  R. Henry,et al.  Polyploidy and evolution in plants. , 2005 .

[94]  A. Kondrashov,et al.  On the origin of species by means of assortative mating , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[95]  B. Husband,et al.  Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). , 1998, American journal of botany.

[96]  P R Grant,et al.  Darwin's finches: Population variation and sympatric speciation. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[97]  H. Kihara,et al.  Chromosomenzahlen und systematische Gruppierung der Rumex-Arten , 1926, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[98]  D. Soltis,et al.  Chloroplast DNA variation in a wild plant, tolmiea menziesii. , 1989, Genetics.

[99]  D. Baum,et al.  Phylogenetic species concepts. , 1992, Trends in ecology & evolution.

[100]  K. Keeler,et al.  Comparison of common cytotypesof Andropogon gerardii(Andropogoneae, Poaceae). , 1999, American journal of botany.

[101]  Douglas E. Soltis,et al.  Advances in the study of polyploidy since Plant speciation , 2003 .

[102]  D. Soltis,et al.  Phylogenetic Relationships within Lithophragma (Saxifragaceae): Hybridization, Allopolyploidy, and Ovary Diversification , 1999 .

[103]  SELECTION FOR PHENOTYPIC DIVERGENCE BETWEEN DIPLOID AND AUTOTETRAPLOID HEUCHERA GROSSULARIIFOLIA , 2005, Evolution; international journal of organic evolution.

[104]  D. Schemske,et al.  COMPONENTS OF REPRODUCTIVE ISOLATION BETWEEN THE MONKEYFLOWERS MIMULUS LEWISII AND M. CARDINALIS (PHRYMACEAE) , 2003, Evolution; international journal of organic evolution.

[105]  I. Leitch,et al.  Genome downsizing in polyploid plants , 2004 .

[106]  D. Love,et al.  The geobotanical significance of polyploidy. I. Polyploidy and latitude. , 1951 .

[107]  George Gaylord Simpson,et al.  Principles of Animal Taxonomy , 1961 .

[108]  Walter S. Judd A Monograph of Lyonia (Ericaceae) , 1981, Journal of the Arnold Arboretum..

[109]  R. C. Jackson POLYPLOIDY AND DIPLOIDY: NEW PERSPECTIVES ON CHROMOSOME PAIRING AND ITS EVOLUTIONARY IMPLICATIONS , 1982 .

[110]  E. Mayr Animal Species and Evolution , 1964 .

[111]  J. Harlan,et al.  On Ö. Winge and a Prayer: The origins of polyploidy , 1975, The Botanical Review.

[112]  B. Husband,et al.  Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). , 2003, The New phytologist.

[113]  J. Thompson,et al.  Plant polyploidy and the evolutionary ecology of plant/animal interactions , 2004 .

[114]  D. Soltis,et al.  Polyploidy in Plants , 2005 .

[115]  F. Weissing,et al.  Sympatric Speciation by Sexual Selection: A Critical Reevaluation , 2004, The American Naturalist.

[116]  T. Mosquin A new taxonomy for Epilobium angustifolium L. (onagraceae) , 1966, Brittonia.

[117]  Jonathan F Wendel,et al.  Polyploidy and Genome Evolution in Plants This Review Comes from a Themed Issue on Genome Studies and Molecular Genetics Edited , 2022 .

[118]  J. Greilhuber,et al.  Diploid and autotetraploid sexuals and their relationships to apomicts in the Ranunculus cassubicus group: insights from DNA content and isozyme variation , 2002, Plant Systematics and Evolution.

[119]  D. Soltis,et al.  Tetrasomic inheritance and chromosome pairing behaviour in the naturally occurring autotetraploid Heuchera grossulariifolia (Saxifragaceae) , 1989 .

[120]  L. Rieseberg,et al.  High biological species diversity in the arctic flora. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Ryan A. Rapp,et al.  Epigenetics and plant evolution. , 2005, The New phytologist.

[122]  Jerry A. Coyne,et al.  Genetics and speciation , 1992, Nature.

[123]  B. Husband,et al.  THE EFFECT OF INBREEDING IN DIPLOID AND TETRAPLOID POPULATIONS OF EPILOBIUM ANGUSTIFOLIUM (ONAGRACEAE): IMPLICATIONS FOR THE GENETIC BASIS OF INBREEDING DEPRESSION , 1997, Evolution; international journal of organic evolution.

[124]  J. Hancock,et al.  Early-acting inbreeding depression and reproductive success in the highbush blueberry, Vaccinium corymbosum L. , 1990, Theoretical and Applied Genetics.

[125]  M. Arroyo,et al.  Elucidating deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions , 2001 .

[126]  J. Thompson,et al.  The evolutionary dynamics of polyploid plants: origins, establishment and persistence. , 1992, Trends in ecology & evolution.

[127]  D. Soltis,et al.  DISCORDANCE BETWEEN NUCLEAR AND CHLOROPLAST PHYLOGENIES IN THE HEUCHERA GROUP (SAXIFRAGACEAE) , 1995, Evolution; international journal of organic evolution.

[128]  Brent D. Mishler,et al.  Species Concepts: A Case for Pluralism , 1982 .

[129]  FITNESS DIFFERENCES AMONG DIPLOIDS, TETRAPLOIDS, AND THEIR TRIPLOID PROGENY IN CHAMERION ANGUSTIFOLIUM: MECHANISMS OF INVIABILITY AND IMPLICATIONS FOR POLYPLOID EVOLUTION , 2000, Evolution; international journal of organic evolution.

[130]  D. Bourguet,et al.  GENETIC ISOLATION BETWEEN TWO SYMPATRIC HOST-PLANT RACES OF THE EUROPEAN CORN BORER, OSTRINIA NUBILALIS HÜBNER. I. SEX PHEROMONE, MOTH EMERGENCE TIMING, AND PARASITISM , 2003, Evolution; international journal of organic evolution.

[131]  Alexey S Kondrashov,et al.  SYMPATRIC SPECIATION BY SEXUAL SELECTION ALONE IS UNLIKELY , 2004, Evolution; international journal of organic evolution.

[132]  M. Donoghue A Critique of the Biological Species Concept and Recommendations for a Phylogenetic Alternative , 1985 .

[133]  S. P. V. Kloet The taxonomy of the highbush blueberry, Vaccinium corymbosum. , 1980 .

[134]  D. Levin The Role of Chromosomal Change in Plant Evolution , 2002 .

[135]  I. Dweikat,et al.  Production and viability of unreduced gametes in triploid interspecific blueberry hybrids , 1988, Theoretical and Applied Genetics.

[136]  T. Gregory,et al.  Polyploidy in Animals , 2005 .

[137]  Kevin C. Nixon,et al.  Populations, Genetic Variation, and the Delimitation of Phylogenetic Species , 1992 .

[138]  D. Tautz,et al.  Sympatric speciation suggested by monophyly of crater lake cichlids , 1994, Nature.