Exoplanet Reflected-light Spectroscopy with PICASO

Here we present the first open-source radiative transfer model for computing the reflected light of exoplanets at any phase geometry, called PICASO: Planetary Intensity Code for Atmospheric Scattering Observations. This code, written in Python, has heritage from a decades old, well-known Fortran model used for several studies of planetary objects within the Solar System and beyond. We have adopted it to include several methodologies for computing both direct and diffuse scattering phase functions, and have added several updates including the ability to compute Raman scattering spectral features. Here we benchmark PICASO against two independent codes and discuss the degree to which the model is sensitive to a user's specification for various phase functions. Then, we conduct a full information content study of the model across a wide parameter space in temperature, cloud profile, SNR and resolving power.

[1]  H. Horak,et al.  Calculations of Planetary Reflection. , 1965 .

[2]  J. M. Dlugach,et al.  The optical properties of Venus and the Jovian planets. II. Methods and results of calculations of the intensity of radiation diffusely reflected from semi-infinite homogeneous atmospheres , 1974 .

[3]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[4]  J. Pollack,et al.  Estimates of the bolometric albedos and radiation balance of Uranus and Neptune , 1986 .

[5]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[6]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[7]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[8]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[9]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[10]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[11]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[12]  Harinder P. Singh,et al.  The Indo-US Library of Coudé Feed Stellar Spectra , 2004, astro-ph/0402435.

[13]  L. Sromovsky Accurate and approximate calculations of Raman scattering in the atmosphere of Neptune , 2015, 1504.02726.

[14]  Adam Burrows,et al.  Phase Functions and Light Curves of Wide-Separation Extrasolar Giant Planets , 2005 .

[15]  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[16]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[17]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[18]  M. Showalter,et al.  Uranus at equinox: Cloud morphology and dynamics , 2008, 1503.01957.

[19]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[20]  Hironobu Iwabuchi,et al.  Fast and accurate radiance calculations using truncation approximation for anisotropic scattering phase functions , 2009 .

[21]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.

[22]  Yuk L. Yung,et al.  Channel selection using information content analysis: A case study of CO2 retrieval from near infrared measurements , 2010 .

[23]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[24]  A. Burrows,et al.  ANALYTIC MODELS FOR ALBEDOS, PHASE CURVES, AND POLARIZATION OF REFLECTED LIGHT FROM EXOPLANETS , 2011, 1112.4476.

[25]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[26]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[27]  M. R. Line,et al.  INFORMATION CONTENT OF EXOPLANETARY TRANSIT SPECTRA: AN INITIAL LOOK , 2011, 1111.2612.

[28]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[29]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS , 2013, 1307.3239.

[30]  Ray Jayawardhana,et al.  CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY , 2014, 1407.2245.

[31]  Joanna K. Barstow,et al.  CLOUDS ON THE HOT JUPITER HD189733b: CONSTRAINTS FROM THE REFLECTION SPECTRUM , 2014, 1403.6664.

[32]  K. Cahoy,et al.  EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES , 2015 .

[33]  A. Ingersoll,et al.  REFLECTED LIGHT CURVES, SPHERICAL AND BOND ALBEDOS OF JUPITER- AND SATURN-LIKE EXOPLANETS , 2015, 1511.04415.

[34]  Jonathan Tennyson,et al.  TAU-REX I: A NEXT GENERATION RETRIEVAL CODE FOR EXOPLANETARY ATMOSPHERES , 2014, 1409.2312.

[35]  K. Isaak,et al.  Probing exoplanet clouds with optical phase curves , 2015, Proceedings of the National Academy of Sciences.

[36]  S. Aigrain,et al.  A CONSISTENT RETRIEVAL ANALYSIS OF 10 HOT JUPITERS OBSERVED IN TRANSMISSION , 2016, 1610.01841.

[37]  Drake Deming,et al.  AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES , 2016, 1612.01245.

[38]  K. Heng,et al.  RAMAN SCATTERING BY MOLECULAR HYDROGEN AND NITROGEN IN EXOPLANETARY ATMOSPHERES , 2016, 1605.07185.

[39]  Tyler Robinson,et al.  Atmospheric Retrieval for Direct Imaging Spectroscopy of Gas Giants in Reflected Light. II. Orbital Phase and Planetary Radius , 2016, 1612.00342.

[40]  Wesley A. Traub,et al.  DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES , 2016, 1604.05370.

[41]  Michael R. Line,et al.  Information Content Analysis for Selection of Optimal JWST Observing Modes for Transiting Exoplanet Atmospheres , 2016, 1612.02085.

[42]  K. Heng,et al.  How Does the Shape of the Stellar Spectrum Affect the Raman Scattering Features in the Albedo of Exoplanets? , 2017, 1708.04243.

[43]  K. Wood,et al.  Dynamic mineral clouds on HD 189733b: II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: Combining scattering and emission spectra , 2017, 1701.00983.

[44]  M. Marley,et al.  Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra , 2017, 1701.00318.

[45]  Jian-Qi Zhao,et al.  Comparison of Chebyshev and Legendre Polynomial Expansion of Phase Function of Cloud and Aerosol Particles , 2017 .

[46]  William R. Heinson,et al.  Q-Space Analysis of the Light Scattering Phase Function of Particles with Any Shape , 2017 .

[47]  P. Lagage,et al.  Toward the Analysis of JWST Exoplanet Spectra: Identifying Troublesome Model Parameters , 2017, 1710.08235.

[48]  Nikole K. Lewis,et al.  Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets , 2018, 1804.00662.

[49]  Nikole K. Lewis,et al.  Color Classification of Extrasolar Giant Planets: Prospects and Cautions , 2018, The Astronomical Journal.

[50]  Jonathan Tennyson,et al.  Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update , 2018, Icarus.

[51]  Nikole K. Lewis,et al.  Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST , 2018, 1803.07983.

[52]  Michael D. Smith,et al.  Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[53]  B. Macintosh,et al.  Characterizing Earth Analogs in Reflected Light: Atmospheric Retrieval Studies for Future Space Telescopes , 2018, 1803.06403.

[54]  Adam Burrows,et al.  Characterization of Exoplanet Atmospheres with the Optical Coronagraph on WFIRST , 2018, The Astronomical Journal.

[55]  G. Orton,et al.  Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere , 2018, Icarus.

[56]  N. Chanover,et al.  Abundance measurements of Titan’s stratospheric HCN, HC3N, C3H4, and CH3CN from ALMA observations , 2018, Icarus.