User's Manual for the Hydrate v1.5 Option of TOUGH+ v1.5: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

HYDRATE v1.5 is a numerical code that for the simulation of the behavior of hydrate-bearing geologic systems, and represents the third update of the code since its first release [Moridis et al., 2008]. It is an option of TOUGH+ v1.5 [Moridis, 2014], a successor to the TOUGH2 [Pruess et al., 1999] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. HYDRATE v1.5 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. By solving the coupled equations of mass and heat balance, the fully operational TOUGH+HYDRATE code can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.5 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects.

[1]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[2]  K. Pruess,et al.  Thermohydrological conditions and silica redistribution near high‐level nuclear wastes emplaced in saturated geological formations , 1988 .

[3]  J. E. Warren,et al.  The Behavior of Naturally Fractured Reservoirs , 1963 .

[4]  J. Kwan,et al.  Advances in the study of gas hydrates , 2004 .

[5]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[6]  G. W. Thomas,et al.  Principles of Hydrocarbon Reservoir Simulation , 1981 .

[7]  A. Herbert,et al.  Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration , 1988 .

[8]  M. Reagan,et al.  Field-Scale Simulation of Production from Oceanic Gas Hydrate Deposits , 2015, Transport in Porous Media.

[9]  P. Vinsome,et al.  A Simple Method For Predicting Cap And Base Rock Heat Losses In' Thermal Reservoir Simulators , 1980 .

[10]  Arvind Gupta,et al.  Methane hydrate dissociation measurements and modeling : the role of heat transfer and reaction kinetics , 2007 .

[11]  Karsten Pruess,et al.  A Seven-Point Finite Difference Method for Improved Grid Orientation Performance in Pattern Steamfloods , 1983 .

[12]  William R. Walker,et al.  Studies of heat transfer and water migration in soils. Final report , 1981 .

[13]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[14]  Curtis M. Oldenburg,et al.  Higher-order differencing for phase-front propagation in geothermal systems , 1998 .

[15]  R. C. Schroeder,et al.  Description Of The Three-Dimensional Two-Phase Simulator Shaft78 For Use In Geothermal Reservoir Studies , 1979 .

[16]  D. W. Peaceman Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability , 1983 .

[17]  J. L. Yanosik,et al.  A Nine-Point, Finite-Difference Reservoir Simulator for Realistic Prediction of Adverse Mobility Ratio Displacements , 1979 .

[18]  S. W. Webb,et al.  Pore-scale modeling of enhanced vapor diffusion in porous media , 1997 .

[19]  K. Aziz,et al.  The Grid Orientation Effect in Reservoir Simulation , 1991 .

[20]  Christoph Clauser,et al.  Permeability prediction based on fractal pore‐space geometry , 1999 .

[21]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[22]  O. M. Phillips,et al.  Flow and Reactions in Permeable Rocks , 1991 .

[23]  K. Pruess,et al.  GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS , 2010 .

[24]  D. Lockner,et al.  Permeability of granite in a temperature gradient , 1981 .

[25]  George J. Moridis,et al.  TOUGH2 software qualification , 1996 .

[26]  T. N. Narasimhan,et al.  A PRACTICAL METHOD FOR MODELING FLUID AND HEAT FLOW IN FRACTURED POROUS MEDIA , 1985 .

[27]  K. Pruess,et al.  TOUGH2-A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow , 1991 .

[28]  G. Moridis TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media , 2012 .

[29]  G. J. Moridis,et al.  Flow and transport simulations using T2CG1, a package of conjugate gradient solvers for the TOUGH2 family of codes , 1995 .

[30]  P. Witherspoon,et al.  Study of two-phase concurrent flow of steam and water in an unconsolidated porous medium , 1985 .

[31]  D. W. Peaceman Fundamentals of numerical reservoir simulation , 1977 .

[32]  P. Milly Moisture and heat transport in hysteretic, inhomogeneous porous media: A matric head‐based formulation and a numerical model , 1982 .

[33]  W. R. Gardner Physics of Flow through Porous Media , 1961 .

[34]  Robert C. Reid,et al.  Tables on the Thermophysical Properties of Liquids and Gases. 2nd Edition, N. B. Vargaftik, Halsted Press, Division of John Wiley & Sons, Inc., New York, August, 1975. $49.50, 758 pages , 1975 .

[35]  K. Pruess,et al.  TOUGH2 User's Guide Version 2 , 1999 .

[36]  George J. Moridis,et al.  Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada , 2004 .

[37]  E. Michaelides Thermodynamic properties of geothermal fluids , 1981 .

[38]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[39]  George J. Moridis,et al.  Numerical Studies of Gas Production From Methane Hydrates , 2003 .

[40]  J. Quirk,et al.  Permeability of porous solids , 1961 .

[41]  Gudmundur S. Bodvarsson,et al.  FLUID AND HEAT FLOW IN GAS-RICH GEOTHERMAL RESERVOIRS , 1985 .

[42]  K. H. Coats,et al.  Effects of grid type and difference scheme on pattern steamflood simulation results , 1982 .

[43]  K. Pruess,et al.  The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas , 1997 .

[44]  W. F. Spencer,et al.  Behavior Assessment Model for Trace Organics in Soil: I. Model Description , 2003 .

[45]  T. Narasimhan,et al.  On fluid reserves and the production of superheated steam from fractured, vapor‐dominated geothermal reservoirs , 1982 .

[46]  S. W. Webb,et al.  Review of enhanced vapor diffusion in porous media , 1998 .

[47]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[48]  Hideki Tanaka Thermal expansivities of cubic ice I and ice VII 1 Dedicated to Professor Keiji Morokuma in celebrat , 1999 .

[49]  Iain S. Duff,et al.  MA28 --- A set of Fortran subroutines for sparse unsymmetric linear equations , 1980 .

[50]  Curtis M. Oldenburg,et al.  EOS7R: Radionuclide transport for TOUGH2 , 1995 .

[51]  G. Marion,et al.  The compressibility of ice to 2.0 kbar , 2004 .

[52]  M. C. Leverett,et al.  Capillary Behavior in Porous Solids , 1941 .

[53]  P. Vaughan,et al.  Analysis of Permeability Reduction During Flow of Heated, Aqueous Fluid Through Westerly Granite , 1987 .

[54]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[55]  M. Clarke,et al.  Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition , 2001 .

[56]  M. Kowalsky,et al.  TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media , 2008 .

[57]  TOWARD INTEGRATING GEOTHERMAL RESERVOIR AND WELLBORE SIMULATION : TETRAD AND WELLSIM L , 2005 .

[58]  R. Corsi,et al.  Behavior of the Bagnore Steam/CO2 Geothermal Reservoir, Italy , 1980 .

[59]  Kenneth S. Pitzer,et al.  Volumetric Properties of Aqueous Sodium Chloride Solutions , 1982 .

[60]  Karsten Pruess,et al.  A similarity solution for two‐phase water, air, and heat flow near a linear heat source in a porous medium , 1992 .

[61]  H. L. Stone Probability Model for Estimating Three-Phase Relative Permeability , 1970 .

[62]  T. L. Jones,et al.  Enhancement of thermal water vapor diffusion in soil , 1984 .

[63]  K. Pruess Grid orientation and capillary pressure effects in the simulation of water injection into depleted vapor zones , 1991 .

[64]  P. Kruger,et al.  Stimulation and reservoir engineering of geothermal resources. Final report Sep 1972-Jun 1977 , 1977 .

[65]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[66]  S. Finsterle,et al.  T2VOC user`s guide , 1995 .

[67]  G. J. Moridis TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems , 2010 .

[68]  L. Klinkenberg The Permeability Of Porous Media To Liquids And Gases , 2012 .

[69]  Karsten Pruess,et al.  Density-driven flow of gas in the unsaturated zone due to the evaporation of volatile organic compounds , 1989 .

[70]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[71]  T. Narasimhan,et al.  AN INTEGRATED FINITE DIFFERENCE METHOD FOR ANALYZING FLUID FLOW IN POROUS MEDIA , 1976 .

[72]  George J. Moridis,et al.  Numerical Studies of Gas Production From Methane Hydrates , 2003 .

[73]  G. Bodvarsson,et al.  Thermal Effects of Reinjection in Geothermal Reservoirs With Major Vertical Fractures , 1984 .

[74]  M. O'Sullivan A Similarity Method for Geothermal Well Test Analysis , 1981 .

[75]  Karsten Pruess,et al.  Analysis of the Stanford geothermal reservoir model experiments using the LBL reservoir simulator , 1988 .

[76]  George J. Moridis,et al.  T2SOLV: An enhanced package of solvers for the TOUGH2 family of reservoir simulation codes , 1997 .

[77]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[78]  C. Oldenburg,et al.  A two-dimensional dispersion module for the TOUGH2 simulator , 1993 .