暂无分享,去创建一个
Christof Fetzer | Pramod Bhatotia | Thorsten Strufe | Spyros Blanas | Do Le Quoc | Ruichuan Chen | Istemi Ekin Akkus
[1] Christof Fetzer,et al. StreamApprox: approximate computing for stream analytics , 2017, Middleware.
[2] George Varghese,et al. An Improved Construction for Counting Bloom Filters , 2006, ESA.
[3] Ion Stoica,et al. BlinkDB: queries with bounded errors and bounded response times on very large data , 2012, EuroSys '13.
[4] Barzan Mozafari,et al. Approximate Query Engines: Commercial Challenges and Research Opportunities , 2017, SIGMOD Conference.
[5] Carsten Binnig,et al. Revisiting Reuse for Approximate Query Processing , 2017, Proc. VLDB Endow..
[6] Jacob Nelson,et al. Approximate storage in solid-state memories , 2013, 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[7] Byung Suk Lee,et al. Stratified Reservoir Sampling over Heterogeneous Data Streams , 2010, SSDBM.
[8] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[9] Tao Zou,et al. Joins for Hybrid Warehouses: Exploiting Massive Parallelism in Hadoop and Enterprise Data Warehouses , 2015, EDBT.
[10] Burton H. Bloom,et al. Space/time trade-offs in hash coding with allowable errors , 1970, CACM.
[11] Neeraj Kumar,et al. SnappyData: A Hybrid Transactional Analytical Store Built On Spark , 2016, SIGMOD Conference.
[12] Arnab Nandi,et al. Perfect and Maximum Randomness in Stratified Sampling over Joins , 2016, ArXiv.
[13] Christof Fetzer,et al. Privacy Preserving Stream Analytics: The Marriage of Randomized Response and Approximate Computing , 2017, ArXiv.
[14] Arnab Nandi,et al. A Unified Correlation-based Approach to Sampling Over Joins , 2017, SSDBM.
[15] Chris Jermaine,et al. Online aggregation for large MapReduce jobs , 2011, Proc. VLDB Endow..
[16] Zhenyu Wen,et al. ApproxIoT: Approximate Analytics for Edge Computing , 2018, 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS).
[17] Swaminathan Natarajan. Imprecise and Approximate Computation , 1995 .
[18] Ameet Talwalkar,et al. Knowing when you're wrong: building fast and reliable approximate query processing systems , 2014, SIGMOD Conference.
[19] Hyoung-Joo Kim,et al. Join processing using Bloom filter in MapReduce , 2012, RACS.
[20] Joseph M. Hellerstein,et al. MapReduce Online , 2010, NSDI.
[21] Zheng Shao,et al. Hive - a petabyte scale data warehouse using Hadoop , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).
[22] Tim Kraska,et al. Approximate Query Processing for Interactive Data Science , 2017, SIGMOD Conference.
[23] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[24] Dan Grossman,et al. EnerJ: approximate data types for safe and general low-power computation , 2011, PLDI '11.
[25] Minos N. Garofalakis,et al. Approximate Query Processing: Taming the TeraBytes , 2001, VLDB.
[26] Christof Fetzer,et al. PrivApprox: Privacy-Preserving Stream Analytics , 2019, Informatik Spektrum.
[27] Woongki Baek,et al. Green: a framework for supporting energy-conscious programming using controlled approximation , 2010, PLDI '10.
[28] Pramod Bhatotia,et al. Slider: incremental sliding window analytics , 2014, Middleware.
[29] Rajeev Motwani,et al. On random sampling over joins , 1999, SIGMOD '99.
[30] Wen-Chi Hou,et al. CS2: a new database synopsis for query estimation , 2013, SIGMOD '13.
[31] Sam Lightstone,et al. Memory-Efficient Hash Joins , 2014, Proc. VLDB Endow..
[32] Peter J. Haas,et al. Ripple joins for online aggregation , 1999, SIGMOD '99.
[33] Helen J. Wang,et al. Online aggregation , 1997, SIGMOD '97.
[34] Pramod Bhatotia,et al. Incoop: MapReduce for incremental computations , 2011, SoCC.
[35] Bin Wu,et al. Wander Join: Online Aggregation via Random Walks , 2016, SIGMOD Conference.
[36] Srikanth Kandula,et al. Approximate Query Processing: No Silver Bullet , 2017, SIGMOD Conference.
[37] Joseph K. Bradley,et al. Spark SQL: Relational Data Processing in Spark , 2015, SIGMOD Conference.
[38] David Hutchison,et al. Scalable Bloom Filters , 2007, Inf. Process. Lett..
[39] Jignesh M. Patel,et al. DAQ: A New Paradigm for Approximate Query Processing , 2015, Proc. VLDB Endow..
[40] Michael T. Goodrich,et al. Invertible bloom lookup tables , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[41] Albert G. Greenberg,et al. Reining in the Outliers in Map-Reduce Clusters using Mantri , 2010, OSDI.
[42] D. Horvitz,et al. A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .
[43] Sharon L. Lohr,et al. Sampling: Design and Analysis , 1999 .
[44] Tao Zou,et al. Building a Hybrid Warehouse , 2016, ACM Trans. Database Syst..
[45] Sridhar Ramaswamy,et al. The Aqua approximate query answering system , 1999, SIGMOD '99.
[46] Christof Fetzer,et al. IncApprox: A Data Analytics System for Incremental Approximate Computing , 2016, WWW.