Goal-oriented error estimation in the analysis of fluid flows with structural interactions

Abstract We present some developments for the extension of goal-oriented error estimation procedures to the analysis of Navier–Stokes incompressible fluid flows with structural interactions. Particular focus is given on error assessment of specific quantities of interest defined on the structural part. The goal is to establish relatively coarse meshes to model the fluid flow but achieve acceptable accuracy in the quantities of interest. A nonlinear goal-oriented error estimation procedure is presented which is applicable to general nonlinear analyses. Some illustrative solutions using ADINA are given.

[1]  COMPUTATIONAL FLUID AND SOLID MECHANICS 2003 , .

[2]  J. P. Pontaza,et al.  A FLOW-CONDITION-BASED INTERPOLATION MIXED FINITE ELEMENT PROCEDURE FOR HIGHER REYNOLDS NUMBER FLUID FLOWS , 2002 .

[3]  C. L. Morgan,et al.  Continua and Discontinua , 1916 .

[4]  Linda G. Griffith,et al.  Role of simulation in understanding biological systems , 2003 .

[5]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[6]  Thomas Grätsch,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[7]  K. Bathe,et al.  Influence functions and goal‐oriented error estimation for finite element analysis of shell structures , 2005 .

[8]  Klaus-Jürgen Bathe,et al.  THE ADINA SYSTEM , 1986 .

[9]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[10]  K. Bathe,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[11]  Anthony T. Patera,et al.  A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .

[12]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[13]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[14]  Klaus-Jürgen Bathe,et al.  A flow-condition-based interpolation finite element procedure for incompressible fluid flows , 2002 .

[15]  Julien Réthoré,et al.  An energy‐conserving scheme for dynamic crack growth using the eXtended finite element method , 2005 .

[16]  K. Bathe,et al.  The CIP method embedded in finite element discretizations of incompressible fluid flows , 2007 .

[17]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[18]  Wen-Bin Shangguan,et al.  Experimental study and simulation of a hydraulic engine mount with fully coupled fluid–structure interaction finite element analysis model , 2004 .

[19]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[20]  K. Bathe Finite Element Procedures , 1995 .

[21]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[22]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[23]  Haruhiko Kohno,et al.  Insight into the flow‐condition‐based interpolation finite element approach: solution of steady‐state advection–diffusion problems , 2005 .

[24]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[25]  J. Tinsley Oden,et al.  Estimation of modeling error in computational mechanics , 2002 .

[26]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[27]  Klaus-Jürgen Bathe,et al.  A flow‐condition‐based interpolation finite element procedure for triangular grids , 2006 .

[28]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[29]  Shanhong Ji,et al.  Recent development of fluid–structure interaction capabilities in the ADINA system , 2003 .