Co-design of Parallel Numerical Methods for Plasma Physics and Astrophysics

Physically meaningful simulations in plasma physics and astrophysics need powerful hybrid supercomputers equipped with computation accelerators. The development of parallel numerical codes for such supercomputers is a complex scientific problem. In order to solve it the concept of codesign is employed. The codesign is defined as considering the architecture of the supercomputer at all stages of the development of the code. The use of codesign is shown by the example of two physical problems: the interaction of an electron beam with plasma and the collision of galaxies. The efficiency is 92 % with 500 Tesla GPUs at the Lomonosov supercomputer. The test computation involved 160 million of model particles.

[1]  W. Dobler,et al.  Hydromagnetic turbulence in computer simulations , 2001, astro-ph/0111569.

[2]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[3]  K.V.Lotov,et al.  Note on quantitatively correct simulations of the kinetic beam-plasma instability , 2014 .

[4]  R. Teyssier Cosmological hydrodynamics with adaptive mesh refinement - A new high resolution code called RAMSES , 2001, astro-ph/0111367.

[5]  Giorgio Turchetti,et al.  Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code , 2013 .

[6]  Y. Grigoryev,et al.  Numerical "Particle-in-Cell" Methods: Theory and Applications , 2002 .

[7]  V. A. Vshivkov,et al.  HYDRODYNAMICAL CODE FOR NUMERICAL SIMULATION OF THE GAS COMPONENTS OF COLLIDING GALAXIES , 2011 .

[8]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[9]  M. L. Norman,et al.  Simulating Radiating and Magnetized Flows in Multiple Dimensions with ZEUS-MP , 2005, astro-ph/0511545.

[10]  Yehuda Hoffman,et al.  Constrained Simulations of the Real Universe. II. Observational Signatures of Intergalactic Gas in the Local Supercluster Region , 2001, astro-ph/0109077.

[11]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[12]  H.M.P. Couchman,et al.  Hydra: a parallel adaptive grid code , 1997 .

[13]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[14]  V. Gregory Weirs,et al.  Adaptive Mesh Refinement - Theory and Applications , 2008 .

[15]  Matthias Steinmetz Grapesph: cosmological smoothed particle hydrodynamics simulations with the special-purpose hardware GRAPE , 1996 .

[16]  Igor Kulikov,et al.  GPUPEGAS: A NEW GPU-ACCELERATED HYDRODYNAMIC CODE FOR NUMERICAL SIMULATIONS OF INTERACTING GALAXIES , 2014 .

[17]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[18]  Russia,et al.  Collisionless stellar hydrodynamics as an efficient alternative to N-body methods , 2012, 1210.5246.

[19]  U. Ziegler,et al.  Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code , 2005 .

[20]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[21]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[22]  Igor G. Chernykh,et al.  AstroPhi: A code for complex simulation of the dynamics of astrophysical objects using hybrid supercomputers , 2015, Comput. Phys. Commun..

[23]  L. H. Howell,et al.  CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-GRAVITY , 2010, 1005.0114.

[24]  Tzihong Chiueh,et al.  GAMER: A GRAPHIC PROCESSING UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS , 2009, 0907.3390.

[25]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[26]  Igor Kulikov PEGAS: Hydrodynamical code for numerical simulation of the gas components of interacting galaxies , 2013 .

[27]  P. Huynh,et al.  HERACLES: a three-dimensional radiation hydrodynamics code , 2007 .